
1 · Descriptive.R · 2007-04-24 20:31 · Stefan

Descriptive Statistics with R
##
Author: Stefan Evert
Modified: Sun May 8 17:44:41 2005 (evert)
##

How to use this tutorial:
Lines beginning with a # character are comments, and should be read. :o)
All other text lines are R commands. Use cut & paste to copy them into the
R command window. If you are running R from Emacs/ESS, first start an R
process (M-x R RET). Then you can execute the current line in this file
by pressing C-c C-n. (Note to Emacs novices: C-c means "press the 'c' key
while holding down the Ctrl key"; M-x refers to the "meta" key, which is
often mapped to the left Alt key.)

##
##
Working with tables of observations (data frames)
##

We will use data from a small non-representative survey conducted at the
IMS Stuttgart in spring 2001. The table of observations is stored in the
file "people.tbl" in the form of nicely formatted ASCII text.

The best way of editing data tables is to load them into a spreadsheet
program (such as MS Excel or the OpenOffice.org spreadsheet component).
In order for this to work reliably, it is better to use a format where
columns are separated by a single character (e.g. "," or TAB) rather
than lined up with blanks (see "people.csv").

Remember that there are also a number of built-in data sets available,
which are useful for experimentation with R's plotting and data manipulation
functions.
data()
?mtcars
data(mtcars)

load table of observations into data frame
people <- read.table("people.tbl")

read.table() has many useful options. If row names are missing from the .tbl
file, ``header=T'' tells R to interpret the first line as a header (giving
the names of variables, i.e. columns). If the observations are stored in a
TAB-separated file (as it is typically used with Perl scripts), use ``sep="\t"''.
These two settings are the defaults of the read.delim() function. Similarly,
read.csv() has appropriate defaults for reading data in the comma-separated
format used by many relational databases and spreadsheet programs.
?read.table

number of columns == number of observed variables
ncol(people)

number of rows == number of observations
nrow(people)

list observed variables
colnames(people)

anonymised names of the subjects (or labels for the observations)
rownames(people)

display table of observation, adjusting screen width (characters per line)

2 · Descriptive.R · 2007-04-24 20:31 · Stefan

for wide terminal or emacs windows
print(people)
options(width=105)
print(people)

view / edit data (caution: this will modify the data frame; no undo available!)
fix(people)

it's safer to store the modified data frame in a different variable
p2 <- edit(people)

for viewing the table, use edit() and "hide" the returned data frame
invisible(edit(people))

show individual observations (by row number of subject name)
people[1:5,]
people[c("P10", "P14", "P15", "P22"),]

observations for a single variable form a vector (numeric or factor)
people$groesse
people$schuh
people$farbe

combine vectors of identical length into new data set
p <- data.frame(gr=people$groesse, schuh=people$schuh, sex=people$sex)
print(p[1:10,])

if all vectors are variables from a single data set, we can use the
following command to preserve row names
p <- people[, c("groesse", "schuh", "sex")]
print(p[1:10,])

subset data frame based on observed variables
small.people <- p[(p$gr < 170),]
print(small.people)

change row names (useful trick for anonymisation)
rownames(small.people) <- paste("S", 1:nrow(small.people), sep="")
print(small.people)

write data frame to disk file without quoting strings
(caution: must set ``quote=TRUE'' if data set contains strings with blanks)
write.table(small.people, file="small-people.tbl", quote=FALSE)

see help page for further options
?write.table

manipulating data: age is only shown as two-digit year of birth in the survey
first compute real year of birth (add 1900 to two-digit versions), then subtract
from current year to approximate age of subjects
people$jahr <- 1900 + people$jahr
people$alter <- 2005 - people$jahr
print(people[, c("jahr", "alter")])

##
##
Numerical data (interval or ratio scale)
Summary statistics: mean, variance, median, quantiles
##

For numerical data (on an interval or ratio scale), the classical characteristics
are mean and variance (or s.d.). Sometimes the more robust median value is also given.

central tendency: the mean

3 · Descriptive.R · 2007-04-24 20:31 · Stefan

x <- people$groesse
mu <- mean(x)
print(mu)

measuring variability:
average deviation from mean is always zero (almost ...)
n <- length(x)
sum(x - mu) / n
need to sum absolute values of deviation
sum(abs(x - mu)) / n
mean squared error = variance is (mathematically) more manageable
sigma2 <- sum((x - mu)^2) / n
print(sigma2)

sample estimate: empirical variance (unbiased estimator)
(for a reasonably large population, the difference between the two
equations is negligible)
s2 <- var(x)
print(s2)
sum((x - mu)^2) / (n-1)

standard deviation: square root of variance (scales linearly)
sigma <- sqrt(sigma2)
print(sigma)
s <- sd(x)
print(s)
sqrt(s2)

another example: shoe size
mean(people$schuh)
sd(people$schuh)

the median M is a more robust measure if there are outliers (extreme values) in the
data
(M is chosen such that exactly half of all values in x are < M)
median(x)

theoretical example using random numbers (imagine values e.g. as yearly income)
income <- round(1000 * rlnorm(100, mean=3))
mean(income)
sd(income)
median(income)

quantiles are a generalisation of the median:
- the p-th percentile is the value Q such that p% of all values are < Q
- first quartile = 25% percentile, second quartile = median, third quartile = 75%
percentile
quantile(x, .25) # first quartile
quantile(x, .5) # median
quantile(x, .75) # third quartile
quantile(x, 0:10 / 10) # 0%, 10%, ... , 100% quantiles

summary for a numerical vectors lists the quartiles (including min and max) and the
mean
summary(x)
summary(people$schuh)

quantiles (or summary) give better impression of a skewed distribution
quantile(income, 0:10 / 10)
summary(income)

for a small data set, values can also be printed in sorted order
(-> empirical distribution function)
sort(people$schuh)

4 · Descriptive.R · 2007-04-24 20:31 · Stefan

sort(income)

mean, median, variance etc. cannot be computed for variables with missing values
(NA's)
mean(people$abi)
use ``na.rm=TRUE'' option to remove missing values before computation:
this has to be kept in mind when interpreting the results!
mean(people$abi, na.rm=TRUE)
sd(people$abi, na.rm=TRUE)
median(people$abi, na.rm=TRUE)
summary() automatically removes (and reports) missing values
summary(people$abi)

for further computations with numerical variables, missing values must be removed
explicitly
test whether variable contains missing values (shows number of NA's)
sum(is.na(people$groesse))
sum(is.na(people$abi))
remove NA's with na.omit() function
abi.no.na <- na.omit(people$abi)

note: we can also show a summary for the entire table of observations
summary(people)

##
##
Graphical presentation of numerical data
##

plots for numerical data are usually meaningless (unless observations are ordered)
barplot(people$schuh, ylab="Schuhgroesse", names.arg=rownames(people))

discrete variables often have duplicate values:
grouping values yields frequency table with barplot-like histogram display
t <- table(people$schuh)
print(t)
plot(t)

warning: bar plots may be misleading and should not be used
barplot(table(people$schuh))

choose reasonable scale on y-axis, especially for low frequencies
plot(t, xlab="Schuhgroesse", ylab="Anzahl", ylim=c(0,15))
plot(table(people$alter), xlab="Alter", ylab="Anzahl", ylim=c(0,15))

continuous variable will usually have frequency == 1 -> rug plot
plot(table(people$groesse), xlab="Groesse", ylab="Anzahl", ylim=c(0,15))

the distribution is characterised by the density of lines in the rug plot,
but this is difficult for the human eye to pick out;
decimal places seem irrelevant for body heights -> group rounded values
t <- table(round(people$groesse))
print(t)
plot(t, ylim=c(0,15))

more general approach: histogram groups values into "buckets"
hist(people$groesse, ylim=c(0,15))

a good choice of bucket sizes and breakpoints is essential:
typically 10-15 groups with equidistant breakpoints, but fewer for small data sets

too few ...
hist(people$groesse, breaks=5, ylim=c(0,15))
too many ...

5 · Descriptive.R · 2007-04-24 20:31 · Stefan

hist(people$groesse, breaks=50, ylim=c(0,15))

it may be best to specify the exact breakpoints rather than just the number:
for small counts, the y-axis should always be scaled (as above)
hist(people$groesse, breaks=seq(from=157.5, to=202.5, by=5), ylim=c(0,15))

add rug plot of the original data, and some other useful options
hist(people$groesse, breaks=seq(from=157.5, to=202.5, by=5), xlab="Groesse", ylim=c
(0,15), col="lightblue", labels=T)
rug(people$groesse)

to compare the histogram to a theoretical distribution (e.g. normal distribution),
the y-axis must be scaled to densities rather than absolute frequency counts; in
this scaling, which is activated with the option "freq=FALSE", the area of each
bar represents the proportion of data points in the corresponding bucket;
the density() function computes a smoothed continuous density function, which
can then be added to the histogram
hist(people$groesse, breaks=seq(from=157.5, to=202.5, by=5), freq=F, xlab="Groesse",
ylim=c(0,0.1), col="lightblue", labels=T)
rug(people$groesse)
lines(density(people$groesse), col="red", lwd=2)

for large data sets, the estimated density curve approximates the histogram plot
(constructed example with normal distribution)
x <- rnorm(5000, mean=175, sd=8)
x <- x[(x >= 158) & (x <= 202)]
hist(x, breaks=seq(from=157.5, to=202.5, by=1), freq=F, xlab="Groesse", ylim=c(0,0.1),
col="lightblue")
rug(x)
lines(density(x), col="red", lwd=2)

add mean and standard deviation to histogram plot
hist(people$groesse, breaks=seq(from=157.5, to=202.5, by=5), freq=F, xlab="Groesse",
ylim=c(0,0.1), col="lightblue", labels=T)
rug(people$groesse)
lines(density(people$groesse), col="red", lwd=2)
abline(v=mu, col="blue", lwd=2)
abline(v=(mu-sigma), col="blue", lwd=1)
abline(v=(mu+sigma), col="blue", lwd=1)

for a skewed distribution, mean and median are different, the
median being shifted towards the mode (maximum) of the distribution
income <- income / 1000 # scaled to units of 1000 Euro
hist(income, breaks=seq(0,max(income)+5,5), xlim=c(0,100), freq=FALSE, xlab="income (in
1000 EUR)")
lines(density(income), col="black", lwd=2)
mu.income <- mean(income)
sigma.income <- sd(income)
abline(v=mu.income, col="blue", lwd=2)
abline(v=(mu.income-sigma.income), col="blue", lwd=1)
abline(v=(mu.income+sigma.income), col="blue", lwd=1)
abline(v=median(income), col="red", lwd=2)

empirical distribution function: for each threshold Q, show the proportion of values
<= Q
x <- people$groesse
n <- length(x)
qqplot(x, 1:n, xlab="Groesse", ylab="Anzahl", type="s")
(uses qqplot() with the percentages corresponding to i out of n values on the y-axis)
qqplot(x, 100 * (1:n) / n, xlab="Groesse", ylab="Anteil (%)", type="s")

visualise quantiles (e.g. the median) in the empirical distribution function
q.50 <- median(x)
lines(c(q.50,q.50,0), c(0,50,50), col="blue", lwd=2)

6 · Descriptive.R · 2007-04-24 20:31 · Stefan

q.90 <- quantile(x, .90)
lines(c(q.90,q.90,0), c(0,90,90), col="darkgreen", lwd=2)

the quantile function smoothes data
p <- 0:100
q <- quantile(x, p/100)
lines(q, p, col="red", lwd=2)

##
##
Comparing distributions and visualising correlations
##

scatterplot for comparison of two numerical variables (on the same data set)
plot(people$groesse, people$schuh, xlab="Groesse [cm]", ylab="Schuhgroesse")
note the automatic scaling, which assumes interval scale;
if both variables are on ratio scale, both axes should start from 0:
plot(people$groesse, people$schuh, xlab="Groesse [cm]", ylab="Schuhgroesse", xlim=c
(0,205), ylim=c(0,50))

another example, using the built-in mtcars data set
data(mtcars)
colnames(mtcars)
plot(mtcars$disp, mtcars$mpg, xlab="Displacement", ylab="Miles per Gallon")

in this case we do not expect a correlation between the variables
plot(people$schuh, people$abi, xlab="Schuhgroesse", ylab="Abiturnote (Mathematik)",
ylim=c(0,15))

side-by-side boxplots for comparison of values of numerical variable
on different data sets (or subsets of a data sets)
first, we must divide the observations into two or more subsets
gr.m <- people$groesse[people$sex == "m"]
gr.w <- people$groesse[people$sex == "w"]
then draw as many side-by-side boxplots as you like (see "?boxplot.stats" for details)
boxplot(gr.w, gr.m, ylab="Groesse", names=c("Girls", "Boys"))
some options to spruce up the graphics
boxplot(gr.w, gr.m, ylab="Groesse", names=c("Girls", "Boys"), boxwex=0.5, col=c
("pink","lightblue"))
abline(h=mean(gr.w), lwd=2, col="darkred")
abline(h=mean(gr.m), lwd=2, col="darkblue")

there's a much easier way to do this ...
gr <- split(people$groesse, people$sex)
print(gr)
boxplot(gr, ylab="Groesse", boxwex=0.5)

testing a popular prejudice ...
boxplot(split(people$abi, people$sex), ylab="Abiturnote (Mathematik)", ylim=c(0,15),
col=c("lightblue","pink"))

we can have any number of categories (e.g. 6 categories in the chickwts data set)
data(chickwts)
boxplot(split(chickwts$weight, chickwts$feed), ylab="weight after 6 weeks",
col="lightblue")

plot interaction of two numerical variables for different categories
coplot() stands for "conditioning plot";
``schuh ~ groesse | sex'' is the formula of a statistical model
(read this as: shoe size depends on height, conditional on sex)
coplot(schuh ~ groesse | sex, data=people)

we can do something similar by colouring the points

7 · Descriptive.R · 2007-04-24 20:31 · Stefan

plot(people$groesse, people$schuh, xlab="Groesse", ylab="Schuhgroesse")
idx.m <- people$sex == "m"
idx.w <- people$sex == "w"
points(people$groesse[idx.m], people$schuh[idx.m], pch=21, bg="blue")
points(people$groesse[idx.w], people$schuh[idx.w], pch=21, bg="red")

##
##
Categorical data (nominal and ordinal scale)
##

categorical data are described by a frequency table
table(people$sex)
table(people$linux)
table(people$stern)

summary statistics such as mean and variance are not meaningful for
categorical data; it is possible to obtain a rough approximation of the
median for data on an ordinal scale, but R refuses to do so
median(people$kochnote)

the summary of a factor (i.e. categorical) variable is just a frequency table
summary(people$kochnote)
summary(people$stern)

plot() automatically displays categorical data as a barplot of the frequency table
plot(people$stern)
this is actually a combination of table() and barplot()
barplot(table(people$stern))

some more examples: don't forget to scale the y-axis for small frequency counts
barplot(table(people$stern), ylim=c(0,15))
barplot(table(people$linux))
barplot(table(people$sex))

note the alphabetical ordering for the signs (people$stern);
convert factor to ordered factor, making sequence of levels explicit
print(people$stern)
people$stern <- ordered(people$stern, levels=c
("Steinbock","Wassermann","Fische","Widder","Stier","Zwillinge","Krebs","Loewe","Jungfrau
","Waage","Skorpion","Schuetze"))
print(people$stern)
barplot(table(people$stern), ylim=c(0,15))

if data on ordinal scale are coded as integers, convert explicitly into ordered factor
plot(people$kochen)
print(people$kochen)
people$kochen <- ordered(people$kochen)
print(people$kochen)
table(people$kochen)
barplot(table(people$kochen))

cross-tabulation for two categorical variables: contingency table
table(people$microsoft, people$linux)
table(people$hasch, people$linux)
table(people$sex, people$kochnote)

##
##
Working with corpus frequency data
##

Frequency counts are always based on a classification of objects or observations
(= tokens) into a finite set of (predefined) categories (= types). The frequency

8 · Descriptive.R · 2007-04-24 20:31 · Stefan

of a type is the number of tokens that were assigned to this category.

As an example, we will look at the frequencies of the letters A...Z in a short
English text. First, we have to split the text into tokens (for this purpose,
each token is a single character) and assign each token to a type (letters
a...z plus special types 0/SPC and 0/PUNCT). This is best achieved with an
external program (such as Perl or Emacs). Here, we just read in the resulting
table of tokens (= rows) with their type classification (= cell values).
corpus <- read.delim("the_garden_chars.tbl")
tokens <- corpus$char

number of tokens and beginning of token/type vector; can you read the text?
length(tokens)
tokens[1:50]
the vector has automatically been converted to a "factor" (= categorical data
on nominal scale), which is appropriate for token/type data

list types ("levels" of the factor) and determine number of types
levels(tokens)
length(levels(tokens))

obtain frequency counts with the table() function and display as bar graph
table(tokens)
barplot(table(tokens))
R knows that this is the sensible choice for nominal data:
plot(tokens)

sort frequency table to find the most frequent types
freqs <- table(tokens)
print(sort(freqs))
print(sort(freqs, decreasing=TRUE))
freqs.sorted <- sort(freqs, decreasing=TRUE)

plot distribution of all and of most frequent types
barplot(freqs.sorted)
barplot(freqs.sorted[1:10])

scale to relative frequencies = probabilities
N <- length(tokens)
probs.sorted <- freqs.sorted / N
barplot(100 * probs.sorted, ylim=c(0,25), ylab="relative frequency (%)")

