
1 · Intro.R · 2007-04-24 20:30 · Stefan

A First Introduction to R
###
Author: Stefan Evert
Modified: Mon Apr 18 18:24:17 2005 (evert)
###

How to use this tutorial:
Lines beginning with a # character are comments, and should be read. :o)
All other text lines are R commands. Use cut & paste to copy them into the
R command window. If you are running R from Emacs/ESS, first start an R
process (M-x R RET). Then you can execute the current line in this file
by pressing C-c C-n. (Note to Emacs novices: C-c means "press the 'c' key
while holding down the Ctrl key"; M-x refers to the "meta" key, which is
often mapped to the left Alt key.)

###
Entering and exitting R
###

To start an R session from the command-line, simply type "R". Windows and Mac
users will have to click on an icon or select R from the Start menu. The most
difficult thing in your first session will be to find the exit (no, "exit" doesn't
work). The trick is to type:

q()

Don't forget the parentheses! When asked whether to save the "workspace image",
answer 'n' for no.

###
Emacs / ESS
###

The best front-end to R is the ESS library in Emacs. If ESS is installed on
your computer, you can type
##
M-x R RET
##
to start an R session. NB: you can have multiple R sessions at the same time,
so be careful not to re-enter the command above accidentally when you're already
running an R process. The *R* buffer works just like the usual R command window.
However, ESS adds many useful commands, most of which are accessible from the
menu bar. Important key sequences are
##
C-c C-q exit R (will ask whether you're sure and clean up)
M-p move through command history (backwards)
M-n move through command history (forwards)
M-r search command history with regular expression (backwards)
TAB complete R functions, variables, filenames, etc.
C-c C-e show as much output from previous command as possible
C-c C-v edit R object in separate buffer
(type C-c C-l in edit buffer to update object in R process)
##
The ESS keys handout lists many other useful key sequences. ESS will also
recognise files with the extension ".R" as R scripts and support syntax
highlighting and automatic indentation, as well as some advanced editing functions:
##
C-c TAB complete R function or variable (like TAB key in *R* buffer)
C-c C-l execute entire script in R process (e.g. function definitions)
C-c C-n execute current line in R process and move to next command
(useful for "interactive" scripts such as this tutorial)

2 · Intro.R · 2007-04-24 20:30 · Stefan

C-c C-r execute region (i.e. part of script)
##

###
Using R as a pocket calculator
###

Enter basic arithmetic expressions with numbers (R does not distinguish
between intergers and real numbers), + - * /, and ^ or ** for exponentiation.

2 + 3 * 5
(2 + 3) * 5
2 ^ 10
compute average of seven numbers
(5 + 4 + 5 + 7 + 10 + 2 + 6) / 7

The result of a computation can be assigned to a variable using the ->
and <- operators (the variable is always on the pointed side of the arrow).
In older versions of R, _ used to be a short form of <- for faster typing and
was not allowed in variable names. This has been changed with R 2.0 but
the ESS interface still automatically expands _ to <- while typing.
Variable names should only use letters [A-Za-z], digits [0-9], and the
period [.] A variable name may not start with a digit. The value of the last
expression is automatically assigned to .Last.value (but this does not seem
to work within ESS!)

assign average from above to variable
average <- .Last.value
or assing explicitly in an ESS session
average <- (5 + 4 + 5 + 7 + 10 + 2 + 6) / 7

print variable value (the following two lines do the same)
print(average)
average
put variable before or after expression
a <- 6
9 -> b
print(a * b)

Common scientific functions such as sqrt(), sin(), cos(), exp(), log(), ...
and the constant pi are built into R.

sqrt(2)
pi
sin(pi / 2)
sin(pi) _should_ be zero ...
sin(pi)
Euler's constant e
e <- exp(1)
print(e)
natural (= base e) logarithm
log(e ^ 2)
base of logarithm can be specified as second argument
log(1000, base=10)
log(64, base=2)
short forms exist for base 10 (common log.) and base 2 (log. dualis)
log10(.0001)
log2(sqrt(2))

###
Help!!!
###

3 · Intro.R · 2007-04-24 20:30 · Stefan

Comprehensive documentation on functions and operators is built into the R
system in the form of help pages. It can be accessed with the help() function
or the shorter ? operator.

ESS users: these functions do not work with C-c C-n and must be entered directly
in the R command buffer. Cut & paste is ok.
help(sin)
?sin
special symbols (including most operators) need to be quoted (not necessary in ESS)
help("*")
?"->"
for an overview of built-in mathematical functions, try the following commands
?Arithmetic
?sqrt
?sin
?log
?Special

ESS displays help pages in a separate buffer with special key bindings. Most useful
are "l" to execute code examples line-by-line and "q" to return to the R buffer.

Documentation is also available in HTML format with a Java-based search engine.
The HTML documentation includes the "Introduction to R" and "R Language Definition"
manuals, and requires the Netscape browser with Java and JavaScript enabled.
help.start()

Most of the functionality of the Java search engine is also available on the
command line, using the help.search() function.
help.search("Student") # looking for Student's t-test
help.search("", package="graphics") # contents of package "graphics"
help.search(keyword="hplot") # high-level plots (see HTML docs for list of
keywords)
?help.search # see this help page for details

###
Everything is an object. Well, almost.
###

Recent versions of S, on which R is based, have introduced an object-oriented
approach.
Although this is not always true, it is useful to think of everything in R as an
object.
Important object types are
##
scalar a single number, string, or boolean
vector a vector of numbers, strings, or booleans (homogeneous)
list a collection of arbitrary objects, often identified by names
function a snippet of code (internally known as a "closure") which can be
called with optional arguments and returns an object
data.frame a two-dimensional table representing the results of an experiment
or a sample; rows correspond to observations (or objects), and
columns correspond to variables (or characteristics); columns (and
sometimes also rows) are identified by names
##
Objects can be named by assigning them to variables. R's kind of object-orientation,
in which every variable knows what kind of data it holds, is largely transparent to
the user.
It just means that functions such as print(), summary(), or plot() will almost always
present data in an appropriate manner.

4 · Intro.R · 2007-04-24 20:30 · Stefan

###
Vectors
###

The simplest data structure in R are vectors, which are typically used to represent
a sequence of observations. Use the c() function ("combine") to create a vector.

vector of numbers
v <- c(1, 2, 3)
print(v)
vector of strings
v2 <- c("Huey", "Lewey", "Dewey")
print(v2)
summary(v2)
c() can also be used to append to a vector, or to combine multiple vectors
c(v, 8, v)

Several special vector functions are available. length() shows the length of a
vector, and mode() the type of data stored (numeric, character or logical).
sum() and prod() compute the sum and product of all elements of a numeric vector,
and mean() the average value. max() and min() find the largest and smallest value.

to compute average of seven numbers, we will usually store the numbers in a vector
numbers <- c(5, 4, 5, 7, 10, 2, 6)
the following lines do exactly the same
sum(numbers) / length(numbers)
mean(numbers)
mean is one of the items in the summary of a vector
summary(numbers)

Sequences of (equidistant) numbers can be generated with the ":" operator, or
more generally with the seq() function.

v <- 1:10
print(v)
sum(v)
factorial of 10 is the product 1 * 2 * ... * 10 =: 10!
prod(v)

sequences of equidistant values are useful for tabulating and plotting functions
x <- seq(from=0, to=2, by=0.1)
print(x)

Mathematical operators and functions take vectors as arguments, and are applied
to each element in turn. For binary operators, vectors and scalars can be mixed.

10 * v + 3
v * v
sqrt(x)

##:: GET SOME PRACTICE: tabulate the factorials n! for n = 1, ..., 14 with a
##:: single R command. A similar command allows you to tabulate the sums
##:: s_n = 1 + 2 + ... + n for n = 1, ..., 100. (hint: ?cumsum)

In order to access a single element in a vector, the element's index has to
be given in square brackets (this is called a subscript). Indices start with
1 and go up to the length of the vector. You can also modify a subscripted element
by assigning to it.

squares <- v * v
7 squared (should be 49 :-)
squares[7]
perhaps _this_ is the question ... ?

5 · Intro.R · 2007-04-24 20:30 · Stefan

squares[7] <- 42
squares

If you want to extract several elements at once (i.e. a subsequence), you
have to supply a vector of indices.

squares of even numbers (note that squares[2,4,6,8,10] won't work)
squares[c(2,4,6,8,10)]

Comparison operators (== != < <= > >=) are also applied to each element of
a vector in turn, resulting in a vector of boolean values. In R, the two
possible values of a boolean are written TRUE and FALSE. They can usually
be abbreviated as T and F (be careful: those symbols may be redefined!).
The logical operators (!=negation &=and |=or) are applied to each element
of boolean vectors in turn.

v >= 5
(v >= 5) & (v <= 8)
redefining truth ...
F <- TRUE
T <- FALSE
TRUE == F
use remove() to discard unwanted objects
remove(F)
remove(T)
TRUE == F
the sum of a boolean vector is the number of TRUE elements
idx <- (v >= 5) & (v <= 8)
sum(idx)

Vectors can also be subscripted with a boolean vector of the same length.
This will return all elements for which the index vector is TRUE.

v[idx]
v[squares == 81]

##:: GET MORE PRACTICE: use a boolean index vector to identify all integers
##:: from 1 through 1000 whose square ends in the same two digits as the number
##:: itself. How many of them are there? What is the pattern for third and fifth
##:: powers instead of squares?
##:: Hint: an integer ends in two 0's iff its remainder modulo 100 is 0.
##:: In R, this condition can be expressed as (v %% 100) == 0

###
Defining your own functions
###

As it was mentioned above, an R function is just a re-usable snippet of code,
which takes zero or more parameters, and usually returns some value. If you
print a function (e.g. by typing just the function name), R will show you the
actual code without running it. In order to execute the code, you have to
specify a parameter list in parentheses (even if the list is empty, as for the
ls() function).

most of the functions we have encountered so far are internal to the R program
sin
sqrt
ls() lists all variables in your workspace; this function is written in the R language
ls
ls()

You can define your own functions with the "function" keyword, followed by a
list of argument names (with optional default values), followed by the body
of the function. The resulting function object is usually assigned to a variable,

6 · Intro.R · 2007-04-24 20:30 · Stefan

thus giving the function a name. In the simplest case, the body of the function
is just an R expression, which yields the return value when the parameters are
substituted. Note that this kind of function definition must be written on a single
line.

our function sqr() computes the square of a number x
sqr <- function (x) x * x
sqr(5)
parameters can be passed by name (useful for functions with many parameters)
sqr(x=2)
since the x * x is valid for vectors, we can pass a vector to sqr()
sqr(v)

fac() computes the factorial n! using prod() as shown previously
fac <- function (n) prod(1:n)
fac(5)
fac(12)
since the expression used to calculate the factorial only works for scalars,
we cannot pass a vector to the function; R does not automatically apply it
to each element in turn as some other programs do (called "threading")
fac(v)
however, we can explicitly apply the function to individual elements with sapply()
sapply(v, fac)

Function arguments are optional if they have a default value. This is often
used for "parameters" which change the behaviour of the function.

compute the p-norm of a vector; for p=1 this is the sum of (the absolute values
of) the elements, for p=2 we get the Euclidean norm (default)
norm <- function (v, p=2) (sum(abs(v) ^ p)) ^ (1/p)
two ways of computing the Euclidean norm
norm(v)
norm(v, p=2)
L1-norm and L4-norm of the vector v
norm(v, p=1)
norm(v, p=4)

###
Graphics: simple plots.
###

R provides a wide range of high-quality plotting functions. Screen graphics
can easily be saved to EPS files for printing. A simple type of plot which
is useful for a one-dimensional list of numbers is the histrogram-like barplot.

the argument supplied to barplot is a vector of numbers
barplot(sqrt(v))
we can label the y-axis with the ylab argument, print a title above the plot (main),
and supply legends for the individual bars with names.arg (as a vector of strings)
barplot(sqrt(v), ylab="square root", main="Sample Plot", names.arg=v)
note that we can pass the numeric vector v as names.arg; R will automatically
convert the numbers into strings

Plots can be fine-tuned with the par() function, which sets various graphics
parameters.
For instance, the "cex" parameter can be used to enlarge letters and symbols.
par(cex=1.3) # default size is 1.0
barplot(sqrt(v), ylab="square root", main="Sample Plot", names.arg=v)

##:: PLOTTING PRACTICE: plot the L1-, L2-, ..., L8-norm for our vector v using barplot().
##:: The bars should be labelled with the name of each norm ("L1", "L2", ...).
##:: Can you compute all 8 norms in a single line? (hint: think of the sapply() function)

7 · Intro.R · 2007-04-24 20:30 · Stefan

The most common type of plot in R is the scatter plot, for which the X and Y
coordinates of individual points are specified. We can also use scatter plots to
draw graphs of mathematical functions. As an example, we will plot the graphs
y = x^2, y = x, and y = sqrt(x) for 0 <= x <= 2. We have to set the coordinate ranges
of both axes explicitly (with the xlim and ylim parameters) to ensure that they
use an identical scale; xlim and ylim are given as two-element vectors.
The function points() allows us to draw multiple graphs in a single scatter plot.

choose equidistant X coordinates for the plot, then compute the corresponding Y coords
x <- seq(from=0, to=2, by=0.05)
y1 <- x ^ 2
y2 <- x
y3 <- sqrt(x)

plot the first function (scatter plot style with small circles)
plot(x, y1, xlim=c(0,2), ylim=c(0,2), main="Some functions", xlab="X", ylab="Y")
"line"-type plots give the impression of a continuous function
plot(x, y1, xlim=c(0,2), ylim=c(0,2), main="Some functions", xlab="X", ylab="Y",
type="l")
add graphs to the plot with points(), varying colour with the col parameter
points(x, y2, type="l", col="red")
points(x, y3, type="l", col="blue")

legends are a little tricky ... (the lwd parameter stands for "line width")
legend(x=0, y=2, legend=c("y=x^2", "y=x", "y=sqrt(x)"), col=c("black", "red", "blue"),
lwd=c(2,2,2))

use (symbolic) expressions to set mathematical formulae, but we have to redo the plot
plot(x, y1, xlim=c(0,2), ylim=c(0,2), main="Some functions", xlab="X", ylab="Y",
type="l")
points(x, y2, type="l", col="red")
points(x, y3, type="l", col="blue")
leg.labels <- expression(y==x^2, y==x, y==sqrt(x))
legend(x=0, y=2, legend=leg.labels, col=c("black", "red", "blue"), lwd=c(2,2,2))

save plot to file (encapsulated postscript format)
dev.copy2eps(file="myplot.eps")

Natural-language data are often spread out across wide frequency or parameter ranges.
Logarithmic plots help to fit the full range into a single display, and make it easier
to identify exponential and power-law relationships between variables. The log
parameter
specifies whether one or both axes are to be scaled logarithmically. The plotting
range
for a logarithmic axis must be positive. First, let us see how (single) logarithmic
plots
transform exponential and logarithmic functions (on the interval [0, 4]).

x <- seq(0.01, 4, by=0.01)
y1 <- log2(x)
y2 <- x
y3 <- 2 ^ x
leg.labels <- expression(y==log2(x), y==x, y==2^x)
leg.col <- c("red", "black", "blue")

non-logarithmic scale
plot(x, y2, xlim=c(0, 4), ylim=c(-1, 3), xlab="X", ylab="Y", type="l")
points(x, y1, type="l", col="red")
points(x, y3, type="l", col="blue")
abline(h=0, lty="11")
abline(v=0, lty="11")
legend(x=0, y=3, legend=leg.labels, col=leg.col, lwd=2)

on an x-logarithmic scale, logarithmic functions become straight lines

8 · Intro.R · 2007-04-24 20:30 · Stefan

plot(x, y2, log="x", xlim=c(0.5, 4), ylim=c(-1, 3), xlab="X", ylab="Y", type="l")
points(x, y1, type="l", col="red")
points(x, y3, type="l", col="blue")
abline(h=0, lty="11")
legend(x=0.5, y=3, legend=leg.labels, col=leg.col, lwd=2)

on a y-logarithmic scale, exponential functions become straight lines
plot(x, y2, log="y", xlim=c(0, 4), ylim=c(0.5, 4.5), xlab="X", ylab="Y", type="l")
points(x, y1, type="l", col="red")
points(x, y3, type="l", col="blue")
abline(v=0, lty="11")
legend(x=0, y=4, legend=leg.labels, col=leg.col, lwd=2)

on a double-logarithmic scale, all power functions (incl. y=x) are straight lines
y1 <- sqrt(x)
y2 <- x
y3 <- x ^ 4
leg.labels <- expression(y==sqrt(x), y==x, y==x^4)
leg.col <- c("red", "black", "blue")
"normal scale": only y=x is a straight line
plot(x, y2, xlim=c(0, 4), ylim=c(0, 4), xlab="X", ylab="Y", type="l")
points(x, y1, type="l", col="red")
points(x, y3, type="l", col="blue")
abline(h=0, lty="11")
abline(v=0, lty="11")
legend(x=0, y=4, legend=leg.labels, col=leg.col, lwd=2)
double-logarithmic scale: slope of line is equal to exponent of power function
plot(x, y2, log="xy", xlim=c(0.1, 4), ylim=c(0.1, 4), xlab="X", ylab="Y", type="l")
points(x, y1, type="l", col="red")
points(x, y3, type="l", col="blue")
legend(x=0, y=4, legend=leg.labels, col=leg.col, lwd=2)

###
Observation tables: data frames
###

The most important object type in R are data frames. They represent the two-
dimensional
tables that result from a statistical sample or an experiment. Each row corresponds to
a single observation (i.e. an object in the case of a random sample). Each column
lists
the observed values of a variable (i.e. one characteristic of the objects in the
sample).
Columns are identified by the name of the corresponding variable, whereas rows are
numbered
starting with one. Rows are often labelled as well (e.g. with the name of a subject,
or
the number/id of an observation). R includes a collection of built-in data sets, which
are
useful for examples and for playing around.

list built-in data sets and get further information about them
data()
?mtcars

load built-in data set: will be available under the specified name
data(mtcars)
print(mtcars)

use dim() to find out size of data set; returns vector (<rows>, <columns>)
dim(mtcars)

labels of columns (variables) and rows (objects)

9 · Intro.R · 2007-04-24 20:30 · Stefan

colnames(mtcars)
rownames(mtcars)

R's simple data editor can be convenient for viewing data sets, too;
be careful not to edit cells accidentally (press ESC to restore cell)
fix(mtcars)

for data frame objects, summary() prints a summary of each variable
summary(mtcars)

plotting a data frame produces a matrix of scatter plots (showing each pair
of variables), which may help to pick out correlations visually
plot(mtcars)

Subsetting data frames works similar to vector subscripts (but note the
extra comma to extract entire rows); multiple lines can be select with
a vector of line numbers, or a boolean vector of appropriate size. There
is a special syntax for accessing single columns.

show the tenth row, and the entry for the Maserati Bora
mtcars[10,]
mtcars["Maserati Bora",]

show miles per gallon, displacement and horsepower for first five cars
mtcars[1:5, c("mpg", "disp", "hp")]

short syntax for column: number of cylindes for all cars in the data set
mtcars$cyl

show all cars with 8 cylinders (using a boolean index vector)
mtcars[(mtcars$cyl == 8),]

We will learn later how to load and save data frames so that we can create
and analyse our own data sets.

