Delta vs. N-Gram Tracing: Evaluating the Robustness of Authorship Attribution Methods

Thomas Proisl* Stefan Evert* Fotis Jannidis†
Christof Schöch‡ Leonard Konle† Steffen Pielström†

*Friedrich-Alexander-Universität Erlangen-Nürnberg
†Julius-Maximilians-Universität Würzburg
‡Universität Trier
Authorship attribution

- Goal: Identify true author of text of unknown or disputed authorship (Juola 2006; Koppel et al. 2009; Stamatatos 2009)
 - based on quantitatively measured linguistic evidence
- Assumption: Authors’ idiosyncratic habits of language use lead to stylistic similarities between their texts
- Typical approach: Similarity between feature vectors
 - relative frequencies of function words, vocabulary richness, syntactic complexity, ...
- Important for real-world applications: Reliability and robustness of methods
 - length of disputed text
 - size of comparison corpus
 - composition of comparison corpus
Authorship attribution

- Goal: Identify true author of text of unknown or disputed authorship (Juola 2006; Koppel et al. 2009; Stamatatos 2009)
 - based on quantitatively measured linguistic evidence
- Assumption: Authors’ idiosyncratic habits of language use lead to stylistic similarities between their texts
- Typical approach: Similarity between feature vectors
 - relative frequencies of function words, vocabulary richness, syntactic complexity, ...
- Important for real-world applications: Reliability and robustness of methods
 - length of disputed text
 - size of comparison corpus
 - composition of comparison corpus
Delta measures

- Delta measures (Burrows 2002; Argamon 2008) are popular in literary stylistics
 - Treat texts as bags of words
 - Use n most frequent words (nMFW) from corpus
 - Standardize relative frequencies to z-scores
 - Optional: normalize feature vectors
 - Quantify similarity with some metric, e.g. Manhattan distance
 - Optional: hierarchical clustering of distance matrix and dendrogram
 - Assign disputed text to author of most similar text or to most frequent author in cluster
- Cosine Delta usually superior to other variants of Delta (Jannidis et al. 2015)
 - also robust to choice of nMFW
- We use Cosine Delta with 3000 MFW
N-gram tracing

- N-gram tracing: Novel method from forensic linguistics (Grieve et al. submitted)
 - Designed for short disputed texts
 - Extract all word or character n-gram types of certain length(s)
 - Determine percentage of overlap with each candidate author in corpus
 - Frequency is ignored!
 - Combination of different n-gram lengths via majority voting
- We use majority vote of word 1-to-3-grams and of character 4-to-10-grams (following Grieve et al. submitted)
Shortening experiments

- Three corpora of German, English and French novels\(^1\)
 (Jannidis et al. 2015; Evert et al. 2017)
 - 75 novels per corpus (25 authors with 3 novels each)
- Stratified three-fold cross-validation
 - 25 test texts per fold (one per author)

Experiment 1a: Shorten **all texts** (test and comparison) to same number of tokens (250–30,000 tokens)

Experiment 1b: Shorten **only test texts** (250–30,000 tokens), length of comparison texts capped at 30,000 tokens

\(^1\)https://github.com/cophi-wue/refcor
Experiment 1a (shorten all texts): German

Proisl et al.
Delta vs. N-Gram Tracing
LREC, 2018-05-11
Experiment 1a (shorten all texts): English
Experiment 1a (shorten all texts): French

![Graph showing the comparison between Cosine Delta, 3000 MFW, N-gram tracing, word 1-to-3-grams, and N-gram tracing, character 4-to-10-grams. The x-axis represents text length, and the y-axis represents accuracy.]
Experiment 1a: Summary

- Accuracy of all three methods improves with larger text sizes
- All methods perform rather poorly for very short texts
 - Extreme case: attribute 250 word fragment to one of 25 possible authors with only 500 words comparison text per author
- Delta usually as good as or better than N-Gram Tracing
- Not clear if word or character n-grams perform better for N-Gram Tracing
- Performance on English and French corpora notably worse than on German corpus
Experiment 1b (shorten test texts): German

Proisl et al.

Delta vs. N-Gram Tracing

LREC, 2018-05-11
Experiment 1b (shorten test texts): English

![Graph showing accuracy vs. text length for different methods: Cosine Delta, 3000 MFW, N-gram tracing, word 1-to-3-grams, N-gram tracing, character 4-to-10-grams.](image-url)
Experiment 1b (shorten test texts): French

- Cosine Delta, 3000 MFW
- N-gram tracing, word 1-to-3-grams
- N-gram tracing, character 4-to-10-grams
Experiment 1b: Summary

- Results for shorter text lengths much better than in experiment 1a
 - Much larger comparison corpus
- N-Gram Tracing outperforms Delta on very short texts by large margin
 - \(\approx 50\% \) accuracy on 250-word fragments
- Not clear if word or character n-grams perform better for N-Gram Tracing
- 1,000–5,000 words sufficient for 80% accuracy
- Performance on English and French corpora notably worse than on German corpus
Sampling experiments

- 973 German novels by 131 authors
 - At least three novels from each author
 - All authors native speakers
 - No translations
 - Novels written 1789–1914

- Draw samples of 75 novels (25 authors with 3 novels each)
- For each sample: Stratified three-fold cross-validation
 - 25 test texts per fold (one per author)

Experiment 2a: 5,000 random samples, each text shortened to 30,000 tokens

Experiment 2b: 5,000 random samples from 25 authors with most texts, each text shortened to 30,000 tokens
Experiment 2a: Samples from all authors

![Box plot showing accuracy for different methods]

- Cosine Delta
- Word 1-to-3-grams
- Character 4-to-10-grams

Experiment 2b: Samples from fixed authors

![Box plots comparing different methods]

- **Cosine Delta**
- **Word 1-to-3-grams**
- **Character 4-to-10-grams**

Accuracy

Sampling experiments: Summary

- Central 50% of samples lie in fairly narrow range around median
 - ±5 points in experiment 2a, even less in 2b
- Considerably larger range for remaining 50%
 - Accuracies between 70% and 100% in experiment 2a
 - Accuracies between 80% and 100% in experiment 2b
- Delta usually a little bit better than N-Gram Tracing
- Accuracies can easily fluctuate by 15 points even with fixed set of comparison authors
Conclusion & future work

Conclusion

▷ Short texts and little material in comparison corpus: Both methods unreliable
▷ Short texts and much material in comparison corpus: N-Gram Tracing better than Delta
 ★ N-Gram Tracing requires at least 1,000–3,000 words and large enough comparison corpus for 80% accuracy
▷ Longer texts (> 5,000 words) and much material in comparison corpus: Delta better than N-Gram Tracing
▷ Composition of comparison corpus has large and unpredictable impact on accuracy of authorship attribution

Future work

▷ Run shortening experiments on large number of samples drawn from large collections of texts in many languages
References

Thank you!

Time for questions!
Cosine Delta in 1a and 2a

![Graph showing Cosine Delta in German corpus](image)
Meaningful differences between languages?

Cosine Delta in 1a and 2a

![Graph showing accuracy vs. text length for German and English corpora](image)
Cosine Delta in 1a and 2a
Meaningful differences between languages?

Cosine Delta in 1a and 2a

Text length vs. nMFW for Cosine Delta (German)
Experiment 2a: Pairwise accuracy diffs between methods

Delta vs. N-Gram Tracing
Experiment 2b: Pairwise accuracy diffs between methods