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msy Example data set

Linear Algebra in

a Nutshell: PCA > example: term-term word space
Baroni & Evert > cooccurrence data extracted from the BNC for nouns as
direct objects of verbs buy and sell
» k =111 nouns with f > 20 (which occur with either
Example data Verb)
> vector coordinates are association scores (modified
logarithmic Dice coefficient) = n = 2 dimensions

noun buy sell
bond 0.28 0.77
cigarette | -0.52  0.44
dress 0.51 -1.30
freehold | -0.01 -0.08
land 1.13 1.54
number | -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 199
system -1.63 -0.70

JUNIVERSITAT
OSNABRUCK

Linear Algebra in
a Nutshell: PCA

Baroni & Evert

Dimensionality
reduction

JUNIVERSITAT
JOSNABRUCK

Linear Algebra in
a Nutshell: PCA

Baroni & Evert

Example data

What is PCA?

» can be seen as a dimensionality reduction technique

» to find the “inherent” underlying dimensions of a data set
> exploits correlations between the variables (coordinates)
> essentially the same as SVD and LSA, but the rationale

behind the procedure becomes clearer in the PCA
approach

Example data set

> intuitive expecation: associations of a noun with buy and
sell should be correlated (commodities tend to have high
associations with both, non-commodities low associations
with both)

» the main inherent dimension should be a combination of
the two association scores

» the secondary dimension has a less clear interpretation
and will typically be omitted from a semantic space (=
dimensionality reduction)

» of course, real-life word spaces have many more
dimensions and not just a single interesting one



mpuste  The variance of a data set sy Centering the data set

Linear Algebra in . . . . . . Linear Algebra in
a Nutshell: PCA » the rationale behind PCA is to find the dimensions that a Nutshell: PCA
Baroni & Evert give the best “explanation” for the “spread” or variance Baroni & Evert
of the data » uncentered
. ) data set "
» variance of a set of vectors (you remember the equations
for one-dimensional data, right?):
Cotest . > centered .
alculating Calculating
. data set .
= >l “
R - it
i=1 » variance of R
1 k centered data
A= g Xi YA
k
i=1
N T T T T
> easier to calculate if we center the data so that i =0 . ° : !
buy
e Centering the data set maw Centering the data set
Linear Algebra in Linear Algebra in
a Nutshell: PCA a Nutshell: PCA
Baroni & Evert Baroni & Evert
> uncentered > uncentered |
data set ] data set
Cocuim > centered o o . > centered )
alculating .. Calculating P O .
data set = data set _— T T

» variance of
centered data

» variance of
centered data

variance = 1.26

k
T T T T 02 = ki]_ ZH)ZHz T T T T T
i=1

buy buy
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The PCA approach

» we want to reduce the dimensionality of the data without
losing variance (intuitively, we want to preserve distances
between the points as far as possible)

» if we reduced the data set to just a single dimension,
which dimension would still have the highest variance?

» mathematically, we project the points onto a line through
the origin and calculate standard variance on this line

> we'll see in a moment how to calculate the projections
> but first, let us look at a few examples

Projection and preserved variance: examples

sell
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Projection

sell

and preserved variance: examples

and preserved variance: examples




JUNIVERSITAT
OSNABRUCK

Linear Algebra in
a Nutshell: PCA

The mathematics of projections
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The covariance matrix

» we want to find the direction v with maximal a§

Baroni & Evert » simplify the repeated calculation of 0%

described by unit vector

VIl =1 K ,
. .o 2 _ 1 > -
» given a point X and the o 07 = %1 E (X, V)
corresponding unit vector =X Py x = (%7} i=1
¥ = %/||X 1= i1 =1 K
e X'=X/|IX||, we have T
. v e S A5
cosp = <X , V> Covariance matrix | f f

> trigonometry: position of projected point on the line is
%1l - cos p = [I¥] - (%, ¥) = (%, 9) .

> (projected point in original space is (X, V) V) i

» amount of variance preserved = one-dimensional variance
on the line (the data set is still centered)
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ma The covariance matrix mawsy  Maximizing the preserved variation

Linear Algebra in

Linear Algebra in
a Nutshell: PCA

a Nutshell: PCA » in our data, we want to find the axis V4 that preserves

the largest amount of variation by maximizing ¥’ Ciy

» C is the covariance matrix of the data points

» C is a square n x n matrix (2 x 2 in our example) Baroni & Evert

Baroni & Evert

> preserved variance after projection onto a line vV can » for higher-dimensional data set, we also want to find the
easily be calculated as U§ =vTicv axis v, of second highest variation, etc.

» the original variance of the data set is » this has to be constrained: v» must be orthogonal to vy,
0?2 =1tr(C)=Ci1+ Co+ -+ Cpn i.e. (V1,v2) =0 (and the same for v etc.)

Fovariance matrix > we can easily solve this problem using a result from linear

o Ca - Cin P sl o : . T .
algebra: since C is a symmetric matrix (C' = C), it has
Ca 05 an eigenvalue decomposition with orthogonal
C — eigenvectors 31, dy, ..., a, and corresponding
Co1.n eigenvalues A\; > \p > --- >\,

Cnl ce Cn,n—l On
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The

The

eigenvalue decomposition of C

the eigenvalue decomposition of C can also be written in

the form
C=U-D-UT

where U is an orthogonal matrix containing the
eigenvectors as columns and D = Diag(A1,...,\,) a
diagonal matrix of eigenvalues

» note that both U and D are n X n square matrices

PCA algorithm

in order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to 3;

since UT is an orthogonal matrix, the coordinates
¥ = UTV have to be orthogonal to the first axis
[1,0,...,0]7, ie. y =1[0,y2,...,yn] "

in other words, we have to maximize
v Cv = /\2(y2)2 st )‘n(yn)z

under constraints y; = 0 and (y2)? + -+ + (ys)? =1
again, the obvious solution is ¥ = [0,1,0,...,0]",
corresponding to V = &y, the second eigenvector of C,
and a preserved variance of a% =X\

similarly for the third, fourth, ... axis
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The

PCA algorithm

now we have aéz vicv=vl-UDUT -V =

(UTV)T-D-(UTV)=(y) Dy
¥y=UTV=1[y1,y2,...,yn] are the coordinates of vV
according to the basis of eigenvectors of C

» ||¥|| = 1 since orthogonal UT is an isometry

» we want to maximize

The

vTC7 = XA1(1)” + A2(y2)* -+ + Anlyn)?

under the constraint (y1)? + (y2)% + -+ (yn)? = 1

the obvious solution is ¥ = [1,0,...,0]7, since A1 is the
largest eigenvalue

this corresponds to vV = 31, the first eigenvector of C,
and a preserved variance of O’é = 3{C§1 =\

PCA algorithm

the eigenvectors 3; of the covariance matrix C are called
the principal components of the data set

the amount of variance preserved (or “explained”) by the
i-th principal component is given by the eigenvalue \;

since A\;1 > Ao > --- > A, the first principal component
preserves the largest amount of variation etc.

coordinates of a point X in PCA space are given by UT%
(note: these are the projections on the principal
components)

for the purpose of dimensionality reduction, only the first
I principal components (with highest variance) are
retained, and the other dimensions in PCA space are
dropped
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PCA example

sell
0

PCA in R

copy « good

> head(pca$x)

acre

-0.

icket
roduct ‘.
prog . share
uor property
asset nd - house
car
stock «
advertising {nsurance « book
. . . clothe
collection «&3- [v .
. . )
arm . 1000
: + + bottle
part «
.- « packet
-
system « | N
nun]ber pound - .+ one pair
yeay " dress
time suit
T T T T T
-2 -1 0 1 2
buy
PC1 PC2

1637281 0.1641069

advertising 0.6304871 -1.8450086

amount
arm
asset
bag

0.7650502 -0.1411030
0.9141092 -1.3080504
-1.3005140 -0.4489060
1.2044251 0.7407619
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PCA in R

> pca <- prcomp(M)

> print (summary(pca))
Importance of components:

PC1  PC2
Standard deviation 0.947 0.599
Proportion of Variance 0.715 0.285
Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067

Rotation:

PC1 PC2
buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416



