

Linear Algebra in a Nutshell: PCA

Baroni & Evert

Dimensionality Example data

Calculating Projection Covariance matrix PCA algorithm

Linear Algebra in a Nutshell Dimensions & PCA

Marco Baroni & Stefan Evert

Institute of Cognitive Science University of Osnabrück, Germany stefan.evert@uos.de

Rovereto, 27 March 2007

What is PCA? **UNIVERSITÄT** OSNABRÜCK

Linear Algebra in a Nutshell: PCA Baroni & Evert

Dimensionality reduction

Example data PCA

Calculating

Projection

PCA algorithm

- can be seen as a dimensionality reduction technique
- ▶ to find the "inherent" underlying dimensions of a data set
- exploits correlations between the variables (coordinates)
- essentially the same as SVD and LSA, but the rationale behind the procedure becomes clearer in the PCA approach

CONVERSITÄT

Example data set

Linear Algebra in a Nutshell: PCA Baroni & Evert

Dimensionality reduction Example data

Calculating Projection PCA algorithm

- example: term-term word space
- cooccurrence data extracted from the BNC for nouns as direct objects of verbs buy and sell
 - \blacktriangleright k = 111 nouns with f > 20 (which occur with either verb)
 - vector coordinates are association scores (modified logarithmic Dice coefficient) $\rightarrow n = 2$ dimensions

noun	buy	sell
bond	0.28	0.77
cigarette	-0.52	0.44
dress	0.51	-1.30
freehold	-0.01	-0.08
land	1.13	1.54
number	-1.05	-1.02
per	-0.35	-0.16
pub	-0.08	-1.30
share	1.92	1.99
system	-1.63	-0.70

Example data set **UNIVERSITÄT** OSNABRÜCK

a Nutshell: PCA Baroni & Evert

Dimensionality reduction Example data PCA

Calculating Projection PCA algorithm

- intuitive expecation: associations of a noun with buy and sell should be correlated (commodities tend to have high associations with both, non-commodities low associations with both)
- the main inherent dimension should be a combination of the two association scores
- ▶ the secondary dimension has a less clear interpretation and will typically be omitted from a semantic space (\rightarrow dimensionality reduction)
- ▶ of course, real-life word spaces have many more dimensions and not just a single interesting one

Linear Algebra in

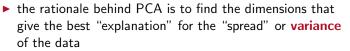
The variance of a data set

Linear Algebra in a Nutshell: PCA

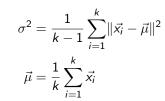
Baroni & Evert

Introduction Dimensionality reduction Example data

PCA Calculating variance Projection Covariance matrix PCA algorithm

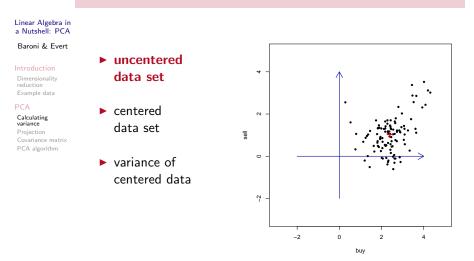


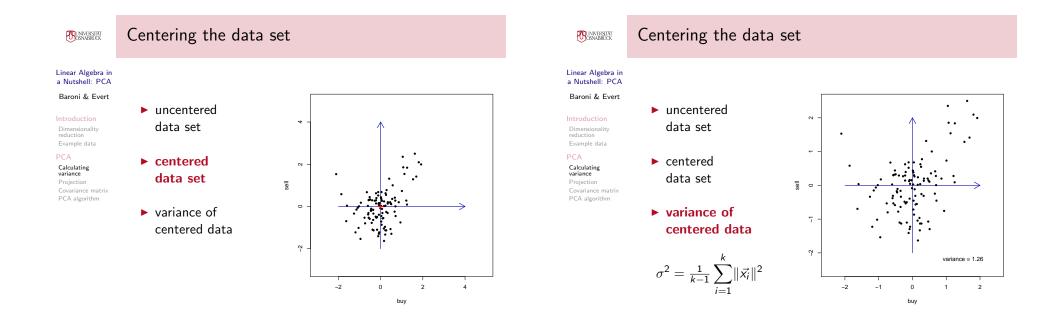
variance of a set of vectors (you remember the equations for one-dimensional data, right?):



• easier to calculate if we **center** the data so that $\vec{\mu} = \vec{0}$

Centering the data set





The PCA approach

Linear Algebra in a Nutshell: PCA

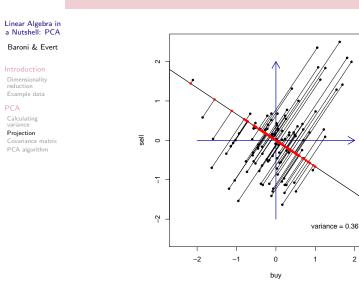
Baroni & Evert

Dimensionality Example data

Calculating variance Projection Covariance matrix PCA algorithm

- we want to reduce the dimensionality of the data without losing variance (intuitively, we want to preserve distances between the points as far as possible)
- ▶ if we reduced the data set to just a single dimension, which dimension would still have the highest variance?
- ▶ mathematically, we project the points onto a line through the origin and calculate standard variance on this line
 - we'll see in a moment how to calculate the projections
 - but first, let us look at a few examples

Projection and preserved variance: examples **UNIVERSITÄT** OSNABRÜCK



Dimensionality reduction

Example data

Calculating variance

Projection

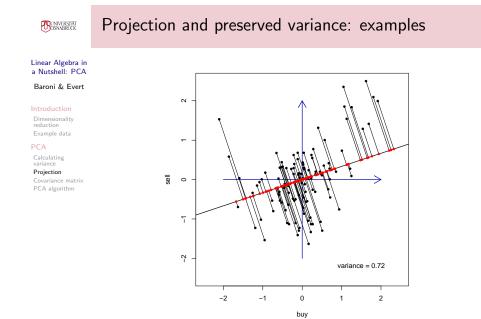
Covariance matrix

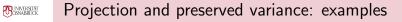
PCA algorithm

PCA

PCA

Projection

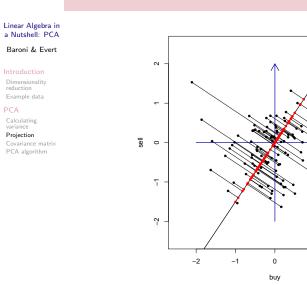




variance = 0.9

1

2



UNIVERSITÄT OSNABRÜCK

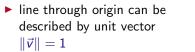
UNIVERSITÄT OSNABRÜCK

The mathematics of projections

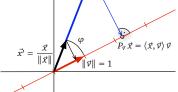
Baroni & Evert

Introduction Dimensionality reduction Example data

PCA Calculating variance Projection Covariance matrix PCA algorithm



▶ given a point x and the corresponding unit vector x' = x/||x||, we have cos φ = ⟨x', v⟩



- ► trigonometry: position of projected point on the line is $\|\vec{x}\| \cdot \cos \varphi = \|\vec{x}\| \cdot \langle \vec{x}', \vec{v} \rangle = \langle \vec{x}, \vec{v} \rangle$
- (projected point in original space is $\langle \vec{x}, \vec{v} \rangle \vec{v}$)
- amount of variance preserved = one-dimensional variance on the line (the data set is still centered)

$$\sigma_{\vec{v}}^2 = \frac{1}{k-1} \sum_{i=1}^k \langle \vec{x}_i, \vec{v} \rangle^2$$

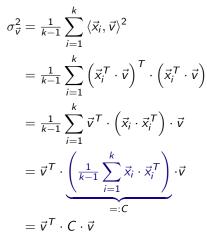
The covariance matrix

Linear Algebra in a Nutshell: PCA

Baroni & Evert

Introduction Dimensionality reduction Example data PCA Calculating variance Projection Covariance matrix PCA algorithm • we want to find the direction \vec{v} with maximal $\sigma_{\vec{v}}^2$

 \blacktriangleright simplify the repeated calculation of $\sigma^2_{\vec{v}}$



The covariance matrix

Linear Algebra in a Nutshell: PCA Baroni & Evert

Dimensionality reduction

Example data

PCA

- C is the covariance matrix of the data points
 C is a square n × n matrix (2 × 2 in our example)
- ► preserved variance after projection onto a line \vec{v} can easily be calculated as $\sigma_{\vec{v}}^2 = \vec{v}^T C \vec{v}$
- the original variance of the data set is $\sigma^2 = tr(C) = C_{11} + C_{22} + \cdots + C_{nn}$

Calculating variance Projection **Covariance matrix** PCA algorithm

$$C = \begin{pmatrix} \sigma_{1}^{2} & C_{12} & \cdots & C_{1n} \\ C_{21} & \sigma_{2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & C_{n-1,n} \\ C_{n1} & \cdots & C_{n,n-1} & \sigma_{n}^{2} \end{pmatrix}$$

UNIVERSITÄT OSIVABRUCK	Maximizing the preserved variation			
Linear Algebra in a Nutshell: PCA Baroni & Evert Introduction Dimensionality reduction Example data PCA Calculating variance Projection Covariance matrix PCA algorithm	 in our data, we want to find the axis v₁ that preserves the largest amount of variation by maximizing v₁^T C v₁ for higher-dimensional data set, we also want to find the axis v₂ of second highest variation, etc. this has to be constrained: v₂ must be orthogonal to v₁, i.e. ⟨v₁, v₂⟩ = 0 (and the same for v₃ etc.) we can easily solve this problem using a result from linear algebra: since C is a symmetric matrix (C^T = C), it has an eigenvalue decomposition with orthogonal eigenvectors a₁, a₂,, a_n and corresponding eigenvalues λ₁ ≥ λ₂ ≥ ··· ≥ λ_n 			

UNIVERSITÄT OSNABRÜCK

The eigenvalue decomposition of C

Linear Algebra in a Nutshell: PCA Baroni & Evert

Example data

Calculating

Projection

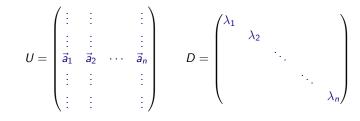
Covariance matrix

PCA algorithm

 \blacktriangleright the eigenvalue decomposition of C can also be written in the form

 $C = U \cdot D \cdot U^T$

where U is an orthogonal matrix containing the eigenvectors as columns and $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ a diagonal matrix of eigenvalues



• note that both U and D are $n \times n$ square matrices

The PCA algorithm **UNIVERSITÄT** OSNABRÜCK

Linear Algebra in a Nutshell: PCA

Example data

Calculating

Projection

PCA algorithm

PCA

• now we have $\sigma_{\vec{v}}^2 = \vec{v}^T C \vec{v} = \vec{v}^T \cdot UDU^T \cdot \vec{v} = (U^T \vec{v})^T \cdot D \cdot (U^T \vec{v}) = (\vec{y})^T D \vec{y}$ Baroni & Evert

> • $\vec{y} = U^T \vec{v} = [y_1, y_2, \dots, y_n]^T$ are the coordinates of \vec{v} according to the basis of eigenvectors of C

• $\|\vec{y}\| = 1$ since orthogonal U^T is an isometry

we want to maximize

$$\vec{v}^T C \vec{v} = \lambda_1 (y_1)^2 + \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under the constraint $(y_1)^2 + (y_2)^2 + \dots + (y_n)^2 = 1$

- the obvious solution is $\vec{y} = [1, 0, \dots, 0]^T$, since λ_1 is the largest eigenvalue
- this corresponds to $\vec{v} = \vec{a}_1$, the first eigenvector of C, and a preserved variance of $\sigma_{\vec{u}}^2 = \vec{a}_1^T C \vec{a}_1 = \lambda_1$

The PCA algorithm **C**NIVERSITÄI OSNABRÜCK

Linear Algebra in a Nutshell: PCA

Baroni & Evert

Dimensionality reduction Example data

Calculating Projection PCA algorithm in order to find the dimension of second highest variance. we have to look for an axis \vec{v} orthogonal to \vec{a}_1

- \blacktriangleright since U^{T} is an orthogonal matrix, the coordinates $\vec{v} = U^T \vec{v}$ have to be orthogonal to the first axis $[1, 0, \dots, 0]^T$, i.e. $\vec{y} = [0, y_2, \dots, y_n]^T$
- in other words, we have to maximize

$$\vec{v}^T C \vec{v} = \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under constraints $y_1 = 0$ and $(y_2)^2 + \cdots + (y_n)^2 = 1$

- again, the obvious solution is $\vec{v} = [0, 1, 0, \dots, 0]^T$. corresponding to $\vec{v} = \vec{a}_2$, the second eigenvector of C, and a preserved variance of $\sigma_{\vec{n}}^2 = \lambda_2$
- ▶ similarly for the third, fourth, ... axis

The PCA algorithm **C**UNIVERSITÄT OSNABRÜCK

Linear Algebra in a Nutshell: PCA Baroni & Evert

Dimensionality reduction

Example data

Calculating variance

Projection

PCA algorithm

PCA

- the eigenvectors \vec{a}_i of the covariance matrix C are called the principal components of the data set
- ▶ the amount of variance preserved (or "explained") by the *i*-th principal component is given by the eigenvalue λ_i
- since $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, the first principal component preserves the largest amount of variation etc.
- coordinates of a point \vec{x} in PCA space are given by $U^T \vec{x}$ (note: these are the projections on the principal components)
- for the purpose of dimensionality reduction, only the first *I* principal components (with highest variance) are retained, and the other dimensions in PCA space are dropped

PCA example **UNIVERSITÄT** OSNABRÜCK

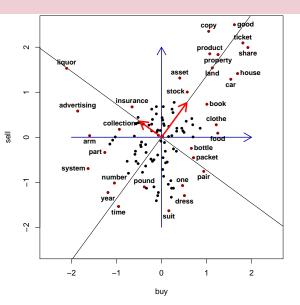
Linear Algebra in a Nutshell: PCA

Baroni & Evert

Introduction Dimensionality reduction

Example data PCA Calculating variance

PCA algorithm



$\mathsf{PCA} \text{ in } \mathsf{R}$ **UNIVERSITÄT** OSNABRÜCK

Linear Algebra in a Nutshell: PCA	> pca <- prcomp(M)		
Baroni & Evert			
1.1.1.1.1	<pre>> print(summary(pca))</pre>		
Introduction Importance of components:			
reduction Example data	PC1 PC2		
PCA	Standard deviation 0.947 0.599		
Calculating variance	Proportion of Variance 0.715 0.285		
Projection Covariance matrix	Cumulative Proportion 0.715 1.000		
PCA algorithm			
	> print(pca)		

Standard deviations: [1] 0.9471326 0.5986067

Rotation:

	PC1	PC2
buy	-0.5907416	0.8068608
sell	-0.8068608	-0.5907416

$\mathsf{PCA} \text{ in } \mathsf{R}$ **UNIVERSITÄT** OSNABRÜCK

Linear Algebra in a Nutshell: PCA	> head(pca\$x)		
Baroni & Evert		PC1	PC2
Introduction	acre	-0.1637281	0.1641069
Dimensionality	advertising	0.6304871	-1.8450086
reduction Example data	amount	0.7650502	-0.1411030
PCA	arm	0.9141092	-1.3080504
Calculating variance	asset	-1.3005140	-0.4489060
Projection Covariance matrix PCA algorithm	bag	1.2044251	0.7407619