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What is PCA?

I can be seen as a dimensionality reduction technique

I to find the “inherent” underlying dimensions of a data set

I exploits correlations between the variables (coordinates)

I essentially the same as SVD and LSA, but the rationale
behind the procedure becomes clearer in the PCA
approach
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Example data set

I example: term-term word space
I cooccurrence data extracted from the BNC for nouns as

direct objects of verbs buy and sell
I k = 111 nouns with f ≥ 20 (which occur with either

verb)
I vector coordinates are association scores (modified

logarithmic Dice coefficient) Ü n = 2 dimensions

noun buy sell

bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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Example data set

I intuitive expecation: associations of a noun with buy and
sell should be correlated (commodities tend to have high
associations with both, non-commodities low associations
with both)

I the main inherent dimension should be a combination of
the two association scores

I the secondary dimension has a less clear interpretation
and will typically be omitted from a semantic space (Ü

dimensionality reduction)

I of course, real-life word spaces have many more
dimensions and not just a single interesting one
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The variance of a data set

I the rationale behind PCA is to find the dimensions that
give the best “explanation” for the “spread” or variance
of the data

I variance of a set of vectors (you remember the equations
for one-dimensional data, right?):

σ2 =
1

k − 1

k∑
i=1

‖~xi − ~µ‖2

~µ =
1

k

k∑
i=1

~xi

I easier to calculate if we center the data so that ~µ = ~0
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Centering the data set

I uncentered
data set

I centered
data set

I variance of
centered data

σ2 = 1
k−1

k∑
i=1

‖~xi‖2
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Centering the data set

I uncentered
data set

I centered
data set

I variance of
centered data

σ2 = 1
k−1

k∑
i=1

‖~xi‖2

−2 0 2 4

−
2

0
2

4

buy

se
ll

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Linear Algebra in
a Nutshell: PCA

Baroni & Evert

Introduction

Dimensionality
reduction

Example data

PCA

Calculating
variance

Projection

Covariance matrix

PCA algorithm

Centering the data set

I uncentered
data set

I centered
data set

I variance of
centered data

σ2 = 1
k−1

k∑
i=1

‖~xi‖2
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The PCA approach

I we want to reduce the dimensionality of the data without
losing variance (intuitively, we want to preserve distances
between the points as far as possible)

I if we reduced the data set to just a single dimension,
which dimension would still have the highest variance?

I mathematically, we project the points onto a line through
the origin and calculate standard variance on this line

I we’ll see in a moment how to calculate the projections
I but first, let us look at a few examples
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Projection and preserved variance: examples
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variance = 0.36
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Projection and preserved variance: examples
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Projection and preserved variance: examples
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The mathematics of projections

I line through origin can be
described by unit vector
‖~v‖ = 1

I given a point ~x and the
corresponding unit vector
~x ′ = ~x/‖~x‖, we have
cos ϕ = 〈~x ′, ~v〉

.
ϕ

‖!v‖ = 1

!x

!x′ =
!x

‖!x‖
P!v !x = 〈!x, !v〉 !v

I trigonometry: position of projected point on the line is
‖~x‖ · cos ϕ = ‖~x‖ · 〈~x ′, ~v〉 = 〈~x , ~v〉

I (projected point in original space is 〈~x , ~v〉~v)
I amount of variance preserved = one-dimensional variance

on the line (the data set is still centered)

σ2
~v =

1

k − 1

k∑
i=1

〈~xi , ~v〉2
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The covariance matrix

I we want to find the direction ~v with maximal σ2
~v

I simplify the repeated calculation of σ2
~v

σ2
~v = 1

k−1

k∑
i=1

〈~xi , ~v〉2

= 1
k−1

k∑
i=1

(
~xT
i · ~v

)T
·
(
~xT
i · ~v

)
= 1

k−1

k∑
i=1

~vT ·
(
~xi · ~xT

i

)
· ~v

= ~vT ·

(
1

k−1

k∑
i=1

~xi · ~xT
i

)
︸ ︷︷ ︸

=:C

·~v

= ~vT · C · ~v
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The covariance matrix

I C is the covariance matrix of the data points
I C is a square n × n matrix (2 × 2 in our example)

I preserved variance after projection onto a line ~v can
easily be calculated as σ2

~v = ~vTC~v

I the original variance of the data set is
σ2 = tr(C ) = C11 + C22 + · · ·+ Cnn

C =



σ2
1 C12 · · · C1n

C21 σ2
2

. . .
...

...
. . .

. . . Cn−1,n

Cn1 · · · Cn,n−1 σ2
n
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Maximizing the preserved variation

I in our data, we want to find the axis ~v1 that preserves
the largest amount of variation by maximizing ~vT

1 C~v1

I for higher-dimensional data set, we also want to find the
axis ~v2 of second highest variation, etc.

I this has to be constrained: ~v2 must be orthogonal to ~v1,
i.e. 〈~v1, ~v2〉 = 0 (and the same for ~v3 etc.)

I we can easily solve this problem using a result from linear
algebra: since C is a symmetric matrix (CT = C ), it has
an eigenvalue decomposition with orthogonal
eigenvectors ~a1,~a2, . . . ,~an and corresponding
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn
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The eigenvalue decomposition of C

I the eigenvalue decomposition of C can also be written in
the form

C = U · D · UT

where U is an orthogonal matrix containing the
eigenvectors as columns and D = Diag(λ1, . . . , λn) a
diagonal matrix of eigenvalues

U =



...
...

...
...

...
...

~a1 ~a2 · · · ~an

...
...

...
...

...
...


D =


λ1

λ2

. . .
. . .

λn



I note that both U and D are n × n square matrices
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The PCA algorithm

I now we have σ2
~v = ~vTC~v = ~vT · UDUT · ~v =

(UT~v)T · D · (UT~v) = (~y)TD~y

I ~y = UT~v = [y1, y2, . . . , yn]
T are the coordinates of ~v

according to the basis of eigenvectors of C

I ‖~y‖ = 1 since orthogonal UT is an isometry

I we want to maximize

~vTC~v = λ1(y1)
2 + λ2(y2)

2 · · ·+ λn(yn)
2

under the constraint (y1)
2 + (y2)

2 + · · ·+ (yn)
2 = 1

I the obvious solution is ~y = [1, 0, . . . , 0]T , since λ1 is the
largest eigenvalue

I this corresponds to ~v = ~a1, the first eigenvector of C ,
and a preserved variance of σ2

~v = ~aT
1 C~a1 = λ1
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The PCA algorithm

I in order to find the dimension of second highest variance,
we have to look for an axis ~v orthogonal to ~a1

I since UT is an orthogonal matrix, the coordinates
~y = UT~v have to be orthogonal to the first axis
[1, 0, . . . , 0]T , i.e. ~y = [0, y2, . . . , yn]

T

I in other words, we have to maximize

~vTC~v = λ2(y2)
2 · · ·+ λn(yn)

2

under constraints y1 = 0 and (y2)
2 + · · ·+ (yn)

2 = 1

I again, the obvious solution is ~y = [0, 1, 0, . . . , 0]T ,
corresponding to ~v = ~a2, the second eigenvector of C ,
and a preserved variance of σ2

~v = λ2

I similarly for the third, fourth, . . . axis
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The PCA algorithm

I the eigenvectors ~ai of the covariance matrix C are called
the principal components of the data set

I the amount of variance preserved (or “explained”) by the
i-th principal component is given by the eigenvalue λi

I since λ1 ≥ λ2 ≥ · · · ≥ λn, the first principal component
preserves the largest amount of variation etc.

I coordinates of a point ~x in PCA space are given by UT~x
(note: these are the projections on the principal
components)

I for the purpose of dimensionality reduction, only the first
l principal components (with highest variance) are
retained, and the other dimensions in PCA space are
dropped
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PCA example

−2 −1 0 1 2

−
2

−
1

0
1

2

buy

se
ll

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

book

bottle

good

house

packet
part

stock

system

advertising

arm

asset

car

clothe
collection

copy

dress

food

insurance

land

liquor

number one pairpound

product

property
share

suit

ticket

time

year

Linear Algebra in
a Nutshell: PCA

Baroni & Evert

Introduction

Dimensionality
reduction

Example data

PCA

Calculating
variance

Projection

Covariance matrix

PCA algorithm

PCA in R

> pca <- prcomp(M)

> print(summary(pca))
Importance of components:

PC1 PC2
Standard deviation 0.947 0.599
Proportion of Variance 0.715 0.285
Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067

Rotation:
PC1 PC2

buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416
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PCA in R

> head(pca$x)
PC1 PC2

acre -0.1637281 0.1641069
advertising 0.6304871 -1.8450086
amount 0.7650502 -0.1411030
arm 0.9141092 -1.3080504
asset -1.3005140 -0.4489060
bag 1.2044251 0.7407619


