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What’s missing?

ñ We know (almost :-)) everything about vector spaces
and the methods of linear algebra now

ñ But we need something else in order to perform
clustering or find dimensions of major variance . . .

ñ Can you guess what is missing?

+ We need a notion of distance!
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Measuring distance

ñ distance between vectors
~u, ~v ∈ Rn Ü (dis)similarity
of data points

ñ ~u = (u1, . . . , un)
ñ ~v = (v1, . . . , vn)

ñ Euclidean distance d2
(
~u, ~v

)
ñ “city block” distance d1

(
~u, ~v

)
ñ both are special cases of the
p-distance dp

(
~u, ~v

)
(for p ∈ [1,∞])
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d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

dp
(
~x, ~y

)
Í
(
|u1 − v1|p + · · · + |un − vn|p

)1/p
d∞

(
~x, ~y

)
= max

{
|u1 − v1|, . . . , |un − vn|

}
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Metric: a measure of distance

ñ A general measure of the distance d
(
~u, ~v

)
between

points ~u and ~v is called a metric and must satisfy the
following axioms:

ñ d
(
~u, ~v

)
= d

(
~v, ~u

)
ñ d

(
~u, ~v

)
> 0 for ~u ≠ ~v

ñ d
(
~u, ~u

)
= 0

ñ d
(
~u, ~w

)
≤ d

(
~u, ~v

)
+ d

(
~v, ~w

)
(triangle inequality)

ñ Metrics are very broad class of distance measures,
some of which do not fit well into vector spaces

ñ E.g., metrics need not be translation-invariant

d
(
~u+ ~x, ~v + ~x

)
≠ d

(
~u, ~v

)
ñ Another unintuitive example is the discrete metric

d
(
~u, ~v

)
=

0 ~u = ~v
1 ~u ≠ ~v

+ exercise: show that discrete metric satisfies axioms
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Distance & norm

ñ Intuitively, distance
d
(
~u, ~v

)
should

correspond to length
‖~u− ~v‖ of vector ~u− ~v

ñ d
(
~u, ~v

)
is a metric

ñ ‖~u− ~v‖ is a norm
ñ ‖~u‖ = d

(
~u, ~0

)
ñ Such a metric is always

translation-invariant

ñ dp
(
~u, ~v

)
= ‖~v − ~u‖p
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6 u‖!u‖ = d
(
!u,!0

)

d (!u,!v) = ‖!u − !v‖

‖!v‖ = d
(
!v,!0

)

ñ p-norm for p ∈ [1,∞]:

‖~u‖p Í
(
|u1|p + · · · + |un|p

)1/p
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Norm: a measure of length

ñ A general norm ‖~u‖ for the length of a vector ~u must
satisfy the following axioms:

ñ ‖~u‖ > 0 for ~u ≠ ~0
ñ ‖λ~u‖ = |λ| · ‖~u‖ (homogeneity, not req’d for metric)
ñ ‖~u+ ~v‖ ≤ ‖~u‖ + ‖~v‖ (triangle inequality)

ñ every norm defines a translation-invariant metric

d
(
~u, ~v

)
Í ‖~u− ~v‖
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Norm: a measure of length
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Unit circle according to p−norm
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ñ Visualisation of norms in
R2 by plotting unit circle
for each norm, i.e. points
~u with ‖~u‖ = 1

ñ Here: p-norms ‖·‖p for
different values of p

ñ Triangle inequality ⇐⇒
unit circle is convex

ñ This shows that p-norms
with p < 1 would violate
the triangle inequality
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Operator and matrix norm

ñ The norm of a linear map (or “operator”) f : U → V
between normed vector spaces U and V is defined as

‖f‖ Í max
{
‖f(~u)‖

∣∣ ~u ∈ U,‖~u‖ = 1
}

ñ ‖f‖ depends on the norms chosen in U and V !

ñ The definition of the operator norm implies

‖f(~u)‖ ≤ ‖f‖ · ‖~u‖

ñ norm of a matrix A = norm of corresponding map f
ñ NB: this is not the same as a p-norm of A in Rk·n

ñ spectral norm induced by Euclidean vector norms
in U and V = largest singular value of A (Ü SVD)
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Cave canem!

ñ Discussion about which norm to use for measuring
distributional similarity in word space models

ñ Measures of distance between points:
ñ “natural” Euclidean norm ‖·‖2
ñ city-block (“Manhattan”) distance ‖·‖1
ñ maximum distance ‖·‖∞
ñ and many other formulae . . .

ñ Measures of the similarity of arrows:
ñ “cosine distance” ∼ u1v1 + · · · +unvn
ñ Dice coefficient (matching non-zero coordinates)
ñ and, of course, many other formulae . . .

+ these measures determine angles between arrows

ñ Don’t do this! – the Euclidean norm induces a much
richer and more intuitive geometric structure

+ There’s a trick to make Euclidean norms more flexible
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Euclidean norm & inner product

ñ The Euclidean norm ‖~u‖2 =
√〈
~u, ~u

〉
is special because

it can be derived from the inner product:〈
~u, ~v

〉
Í ~xT ~y = x1y1 + · · · + xnyn

where ~u ≡E ~x and ~v ≡E ~y are the standard coordinates
of ~u and ~v (certain other coordinate systems also work)

ñ The inner product is a positive definite and
symmetric bilinear form with the following
properties:

ñ
〈
λ~u, ~v

〉
=
〈
~u,λ~v

〉
= λ

〈
~u, ~v

〉
ñ
〈
~u+ ~u′, ~v

〉
=
〈
~u, ~v

〉
+
〈
~u′, ~v

〉
ñ
〈
~u, ~v + ~v′

〉
=
〈
~u, ~v

〉
+
〈
~u, ~v′

〉
ñ
〈
~u, ~v

〉
=
〈
~v, ~u

〉
(symmetric)

ñ
〈
~u, ~u

〉
= ‖~u‖2 > 0 for ~u ≠ ~0 (positive definite)

ñ also called dot product or scalar product
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Angles and orthogonality

ñ The Euclidean inner product has an important
geometric interpretation: it can be used to define
angles and orthogonality

ñ Cauchy-Schwarz inequality:∣∣〈~u, ~v〉∣∣ ≤ ‖~u‖ · ‖~v‖
ñ Angle φ between vectors ~u, ~v ∈ Rn:

cosφ Í
〈
~u, ~v

〉
‖~u‖ · ‖~v‖

ñ cosφ is the “cosine distance” measure of similarity

ñ ~u and ~v are orthogonal iff
〈
~u, ~v

〉
= 0

ñ the shortest connection between a point ~u and a
subspace U is orthogonal to all vectors ~v ∈ U
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Cartesian coordinates

ñ A set of vectors ~b(1), . . . , ~b(n) is called orthonormal if
the vectors are pairwise orthogonal and of unit length:

ñ
〈~b(j), ~b(k)〉 = 0 for j ≠ k

ñ
〈~b(k), ~b(k)〉 = ∥∥~b(k)∥∥2 = 1

ñ An orthonormal basis and the corresponding
coordinates are called Cartesian

ñ Cartesian coordinates are particularly intuitive, and the
inner product has the same form wrt. every Cartesian
basis B: for ~u ≡B ~x′ and ~v ≡B ~y′, we have〈

~u, ~v
〉
= (~x′)T ~y′ = x′1y′1 + · · · + x′ny′n

ñ NB: the column vectors of the matrix B are orthonormal
ñ recall that the columns of B specify the standard

coordinates of the vectors ~b(1), . . . , ~b(n)
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Orthogonal projection

ñ Cartesian coordinates ~u ≡B ~x can easily be computed:

〈
~u, ~b(k)

〉
=
〈 n∑
j=1

xj~b(j), ~b(k)
〉

=
n∑
j=1

xj
〈
~b(j), ~b(k)

〉
︸ ︷︷ ︸

=δjk

= xk

ñ Kronecker delta: δjk = 1 for j = k and 0 for j ≠ k

ñ Orthogonal projection PV : Rn → V to subspace
V Í sp

(
~b(1), . . . , ~b(k)

)
(for k < n) is given by

PV ~u Í
k∑
j=1

~b(j)
〈
~u, ~b(j)

〉
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Hyperplanes & normal vectors

ñ A hyperplane U ⊆ Rn through the origin ~0 can be
characterized by the equation

U =
{
~u ∈ Rn

∣∣ 〈~u, ~n〉 = 0
}

for a suitable ~n ∈ Rn with ‖~n‖ = 1

ñ ~n is called the normal vector of U
ñ The orthogonal projection PU into U is given by

PU ~v Í ~v − ~n
〈
~v, ~n

〉
ñ An arbitrary hyperplane Γ ⊆ Rn can analogously be

characterized by

Γ =
{
~u ∈ Rn

∣∣ 〈~u, ~n〉 = a}
where a ∈ R is the (signed) distance of Γ from ~0
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Orthogonal matrices

ñ A matrix A whose column vectors are orthonormal is
called an orthogonal matrix

ñ AT is orthogonal iff A is orthogonal

ñ The inverse of an orthogonal matrix is simply its
transpose, i.e. A−1 = AT

ñ it is easy to show ATA = I by matrix multiplication,
since the columns of A are orthonormal

ñ since AT is also orthogonal, it follows that
AAT = (AT )TAT = I

ñ side remark: the transposition operator ·T is called an
involution because (AT )T = A
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Isometric maps

ñ An endomorphism f : Rn → Rn is called an isometry
iff
〈
f(~u), f (~v)

〉
=
〈
~u, ~v

〉
for all ~u, ~v ∈ Rn

ñ Geometric interpretation: isometries preserve angles
and distances (which are defined in terms of 〈·, ·〉)

ñ f is an isometry iff its matrix A is orthogonal

ñ Coordinate transformations between Cartesian systems
are isometric (because B and B−1 = BT are orthogonal)

ñ Every isometric endomorphism of Rn can be written as
a combination of planar rotations and axial
reflections in a suitable Cartesian coordinate system

R(1,3)φ =
cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

 , Q(2) =
1 0 0

0 −1 0
0 0 1


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General inner products

ñ General inner products can be defined by〈
~u, ~v

〉
B Í (~x′)T ~y′ = x′1y′1 + · · · + x′yy′n

wrt. non-Cartesian basis B (~u ≡B ~x′, ~v ≡B ~y′)

ñ 〈·, ·〉B can be expressed in standard coordinates
~u ≡E ~x, ~v ≡E ~y using the transformation matrix B:〈

~u, ~v
〉
B = (~x′)T ~y′ =

(
B−1~x

)T (B−1 ~y
)

= ~xT (B−1)TB−1 ~y Î ~xTC ~y
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General inner products

ñ The coefficient matrix C Í (B−1)TB−1 of the general
inner product is symmetric

CT = (B−1)T ((B−1)T )T = (B−1)TB−1 = C

and positive definite

~xTC~x =
(
B−1~x

)T (B−1~x
)
= (~x′)T ~x′ ≥ 0
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General inner products

An example:

ñ ~b(1) = (3,2), ~b(2) = (1,2)

ñ B =
[

3 1
2 2

]

ñ B−1 =
[ 1

2 −1
4

−1
2

3
4

]

ñ C =
[
.5 −.5
−.5 .625

]
ñ graph shows unit circle

of the inner product C,
i.e. points ~x with

~xTC~x = 1
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General inner products

ñ C is a symmetric matrix

ñ There is always an
orthonormal basis so
that C has diagonal form

å “standard” dot product
with additional scaling
factors (wrt. this
orthonormal basis)

ñ Intuitively, the unit circle
is a squashed and
rotated circle
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The kernel trick
Tweak your space, don’t tweak your norms . . .
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The kernel trick

ñ Use standard inner products, but map data to
higher-dimensional space before applying them

å All methods of Euclidean geometry are still available

ñ Non-linear mappings can drastically change the
geometry of the original vector space

ñ The kernel trick allows efficient computation of inner
products and distances without an explicit
high-dimensional representation〈

~u, ~v
〉
= f

(
~u, ~v

)
where f must satisfy the properties of an inner product

Linear Algebra
in a Nutshell:

Norms, Kernels
& Dimensions

S. Evert

Distance
Metric spaces

Vector norms

Euclidean geometry

Normal vector

Isometry

General inner product

Kernel trick

Kernelisation

ñ Kernelised versions of all algorithms from linear
algebra and normed vector spaces can be formulated

ñ A hyperplane in a kernelised space corresponds to a
non-linear classifier in the original space

å this is the principle behind support vector machines
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I think that’s enough for today . . .


