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Measuring distance

» distance between vectors
U,V € R" = (dis)similarity
of data points

> U= (Uy,...,uUn)
> U= (v1,...,vn)

» Euclidean distance d» (i, V)

» “city block” distance d (i, V)

» both are special cases of the
p-distance d,, (i, V)

(forp e [1,])

dp (X,9) = (lur —v1l” + -« + |up — vul?)

1/p

de (X,¥) = max{lui —vil,..., |[un — vnl}
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What’s missing?

» We know (almost :-)) everything about vector spaces
and the methods of linear algebra now

» But we need something else in order to perform
clustering or find dimensions of major variance ...

> Can you guess what is missing?

== We need a notion of distance!

Metric: a measure of distance

v

A general measure of the distance d (i, U) between
points 1 and v is called a metric and must satisfy the
following axioms:

> d (i, 7) =d (U,1)

» d(u,v)>0fori v

> d (id,i) =0

» d(i,w) <d (u,V) +d (U,w) (triangle inequality)
» Metrics are very broad class of distance measures,
some of which do not fit well into vector spaces

» E.g., metrics need not be translation-invariant

d i+ %0 +%) *d (i, 0)

v

Another unintuitive example is the discrete metric

0 Uu=v

d(ﬁ,ﬁ):{

== exercise: show that discrete metric satisfies axioms

1 u=+v
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Distance & norm

Norm: a measure of length

X2

> Intuitively, distance
d (i, v) should
correspond to length
l[1i — V|| of vector 1i — U
» d (u, V) is a metric
» |1 — U]l is a norm
> |14l = d(,0)
» Such a metric is always
translation-invariant

> dy (i, 7) = |1V — il

» p-norm for p € [1,c0]:

\ ||| = d(,0)

origin

— 1/
Il = (Iurl? + - - - + lunl?) 7

Unit circle according to p—norm

1.0

0.5

1 1
TTT X
TN
guINk

Visualisation of norms in
R2 by plotting unit circle
for each norm, i.e. points
u with [l =1

Here: p-norms |||, for
different values of p

Triangle inequality <
unit circle is convex
This shows that p-norms
with p < 1 would violate
the triangle inequality
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Norm: a measure of length

» A general norm ||ii] for the length of a vector i must
satisfy the following axioms:
> ||l > 0 for i # 0
> ||A1]l = |A| - ||| (homogeneity, not req’d for metric)
> |lii + Ul < ||l + ||¥] (triangle inequality)

» every norm defines a translation-invariant metric

d (u,v) = [lu - v

Operator and matrix norm

» The norm of a linear map (or “operator”) f: U - V
between normed vector spaces U and V is defined as

I£1l = max {|lLf @) | 4 € U, ll4ll = 1}

> |IfIl depends on the norms chosen in U and V!

» The definition of the operator norm implies

If GO < LA - [l

» norm of a matrix A = norm of corresponding map f
» NB: this is not the same as a p-norm of A in Rk
» spectral norm induced by Euclidean vector norms
in U and V = largest singular value of A (= SVD)
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Euclidean geometry

Cave canem!

v

Discussion about which norm to use for measuring
distributional similarity in word space models
Measures of distance between points:

» “natural” Euclidean norm ||-||»
» city-block (“Manhattan”) distance ||
» maximum distance |||«
» and many other formulae ...
Measures of the similarity of arrows:
» “cosine distance” ~ UV + -+ + UpUn
» Dice coefficient (matching non-zero coordinates)
» and, of course, many other formulae ...
= these measures determine angles between arrows

Don’t do this! - the Euclidean norm induces a much
richer and more intuitive geometric structure

= There’s a trick to make Euclidean norms more flexible

Angles and orthogonality

v

v

v

v

The Euclidean inner product has an important
geometric interpretation: it can be used to define
angles and orthogonality

Cauchy-Schwarz inequality:
| (i, )| < llull - 17l

Angle ¢ between vectors i,V € R™:
(u,v)
COS ¢ 1= =
lull - vl
> cos ¢ is the “cosine distance” measure of similarity
1 and U are orthogonal iff (i, V) = 0

» the shortest connection between a point i and a
subspace U is orthogonal to all vectors v € U
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Euclidean norm & inner product

>

The Euclidean norm ||iill2 = +/{1i, 1) is special because
it can be derived from the inner product:

(1,0) =XTy =x101 + -+ + + XnVn

where 1 =g X and U =g y are the standard coordinates
of 1i and v (certain other coordinate systems also work)

The inner product is a positive definite and
symmetric bilinear form with the following
properties:
> (AU, U
» (U +1u

~

>
>
(

also called dot product or scalar product

v

ST
~
Il
S
<l
w
<
3
3
™
~
=,
o

v

Cartesian coordinates

v

A set of vectors bV, ... b™ is called orthonormal if
the vectors are pairwise orthogonal and of unit length:

- (B, BRY = 0 for j + k
» (B0, bRy = [[pR]* =1
An orthonormal basis and the corresponding
coordinates are called Cartesian

Cartesian coordinates are particularly intuitive, and the
inner product has the same form wrt. every Cartesian
basis B: for 1 =g X’ and UV =g y’, we have

U,7) = (X)Ty =xiy] +- -+ xnvn

NB: the column vectors of the matrix B are orthonormal

> recall that the columns of B specify the standard
coordinates of the vectors bV, ..., b™
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Orthogonal projection

» Cartesian coordinates

(i, 5®) =

/\

n
Z b(J) b(k)>

5 = x

s

=6k

» Kronecker delta: djx =1 for j = k and O for j # k

» Orthogonal projection Py : R" —
V = sp (b(”,...

V to subspace
,b(k)) (for k < n) is given by

k
i= S B (6 b
S50 (@)

Orthogonal matrices

» A matrix A whose column vectors are orthonormal is
called an orthogonal matrix

» AT is orthogonal iff A is orthogonal

» The inverse of an orthogonal matrix is simply its
transpose, i.e. A~ = AT
> it is easy to show AT A = I by matrix multiplication,
since the columns of A are orthonormal
» since AT is also orthogonal, it follows that
AAT = (ATHTAT =

» side remark: the transposition operator -7 is called an

involution because (AT)T = A

U =g X can easily be computed:
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Hyperplanes & normal vectors

v

A hyperplane U < R" through the origin 0 can be
characterized by the equation

U={ueR"| (u,n) =0}
for a suitable 71 € R™ with ||7i]] = 1
7 is called the normal vector of U
The orthogonal projection Py into U is given by

Py = ¥ — i (U, i)

An arbitrary hyperplane I' € R™ can analogously be
characterized by

I ={ueR™| (U,n)=al

where a € R is the (signed) distance of ' from 0

Isometric maps

An endomorphism f: R" — R" is called an isometry
iff (f (), f(v)) = (u,v) forall 1,V € R"

Geometric interpretation: isometries preserve angles
and distances (which are defined in terms of (-, -))

f is an isometry iff its matrix A is orthogonal

Coordinate transformations between Cartesian systems
are isometric (because B and B~! = BT are orthogonal)

Every isometric endomorphism of R" can be written as
a combination of planar rotations and axial
reflections in a suitable Cartesian coordinate system

cos¢p 0 —sing 1 0 O
RV =0 1 0o |, @®=]0 -1 0
singg 0 cos¢ 0O 0 1
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2 Nutshell: » General inner products can be defined by 2 Nutshell: » The coefficient matrix C = (B~1)TB~! of the general
& Dimensions & Dimensions inner product is symmetric
S. Evert <ﬁ,17>B = ()_C.,)Tj/., = Xiyi + e +x3/y1l/,' S. Evert
CT — (B—I)T((B—l)T)T — (B—I)TB—l =C
wrt. non-Cartesian basis B (1i =g X', U = y')
and positive definite
» (-,-)p can be expressed in standard coordinates .
coremmerprose il =g X, U =f ¥ using the transformation matrix B: e mererose xXTCx = (B7'x) (B7'X) = (X)X =0
— =7/ =7 —1=\T -15
(U,v)p = (XY = (B7'X)" (B7'y)
— )-C'T(B—I)TB—lj; — )—('TCJ-}'
ikt General inner products iR General inner products
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in a Nutshell: An example.

Norms, Kernels - » Cisa symmetric matrix
1= (3,2), b = (1,2)

& Dimensions

5. Bvert > b = S. Bvert » There is always an
» B = [3 1] orthonormal basis so
2 2 that C has diagonal form

w “standard” dot product
General inner product with additional scaling
factors (wrt. this
orthonormal basis)

N[ =

_1
» B—1 = 1 34
General inner product -5 I

5 -5
€= [—.5 .625}

graph shows unit circle
of the inner product C, is a squashed and
i.e. points X with rotated circle

v

> Intuitively, the unit circle

v

x*Tcx =1
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The kernel trick

Tweak your space, don’t tweak your norms ...

Kernelisation

» Kernelised versions of all algorithms from linear
algebra and normed vector spaces can be formulated

» A hyperplane in a kernelised space corresponds to a
non-linear classifier in the original space

w this is the principle behind support vector machines
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The kernel trick

» Use standard inner products, but map data to
higher-dimensional space before applying them

= All methods of Euclidean geometry are still available

» Non-linear mappings can drastically change the
geometry of the original vector space

» The kernel trick allows efficient computation of inner
products and distances without an explicit
high-dimensional representation

(6,7) = f (3, )

where f must satisfy the properties of an inner product

I think that’s enough for today ...



