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Abstract

In this paper, we describe the empirical evaluation of statistical association measures
for the extraction of lexical collocations from text corpora. We argue that the results
of an evaluation experiment cannot easily be generalized to a different setting.
Consequently, such experiments have to be carried out under conditions that are
as similar as possible to the intended use of the measures. Finally, we show how
an evaluation strategy based on random samples can reduce the amount of manual
annotation work significantly, making it possible to perform many more evaluation
experiments under specific conditions.
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1 Introduction

In this contribution, we propose a three-step procedure for empirically eval-
uating the usefulness of individual statistical association measures (AMs) for
the identification of lexical collocations in text corpora. In order to reduce the
manual annotation work required, we propose a random sample evaluation
(RSE) where the AM(s) most appropriate for a certain task and a specific
extraction corpus are identified on the basis of a random sample extracted
from the extraction corpus in question.
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1.1 Motivation

All statistics-based approaches to natural-language processing require a thor-
ough empirical evaluation. This is also the case for the extraction of colloca-
tions from text corpora using statistical association measures (AMs). Common
practice in this area, however, is that evaluations have a middlingly ad-hoc
character. Authors typically look at small lists of n highest-ranking colloca-
tion candidates and decide, most often by rule of thumb, which of the lexical
tuples in the candidate list qualify as true positives (TPs), while the actual
discussion focuses on the mathematical properties of the proposed measure. 1

This is without dispute an important issue, but not sufficient to get a complete
picture of the usefulness of a certain AM in practice.

A common approach to the identification of lexical collocations is their semi-
automatic extraction from text corpora. First, n-tuples of syntactically related
words are extracted as collocation candidates, which are then annotated with
AM scores. Finally, the candidates with the highest scores are inspected by a
human expert in order to select the true collocations (= TPs). The extraction
step is usually based on a syntactic pre-processing of the corpus, although some
researchers define cooccurrence purely in terms of the distance between words
(e.g. Sinclair, 1991), if only because the necessary pre-processing tools are not
available (cf. Choueka, 1988). Most AMs are designed for word pairs, although
first suggestions for an extension to n-tuples have been made (da Silva and
Lopes, 1999; Blaheta and Johnson, 2001). 2 Although our example data consist
of word pairs that occur in specific syntactic relations, the proposed evaluation
procedure is independent of the number of words in a lexical tuple and the
extraction method used. In any case, the resulting set of collocation candidates
will be huge, most of them occurring just once or twice in the corpus (in
accordance with Zipf’s law).

The simplest approach to improving the quality of automatically extracted
collocation candidates is to rank them by their cooccurrence frequencies, fol-
lowing the intuition that recurrence is a good indicator of collocativity (see
e.g. Firth, 1957, Ch. IV). Further improvements are expected from AM scores,
since the statistical association between the component words of each candi-
date is assumed to correlate better with collocativity than mere cooccurrence
frequency. Association measures can be applied to a candidate set in three
different ways: (a) use a certain AM value as a threshold to distinguish be-
tween collocational and non-collocational word combinations; (b) rank the

1 See Evert (2004b) or Evert (2004a) for a comprehensive listing of known AMs.
2 Such extensions typically focus on plain sequences of adjacent words called n-
grams (e.g. Dias et al., 1999), rather than tuples of syntactically related words that
may be quite far apart in the surface form of a sentence (cf. Goldman et al., 2001).
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candidates according to their AM scores and select the n highest-ranking can-
didates for manual annotation (called an n-best list); (c) leave it to the human
annotator how many candidates from the ranked list she is willing to inspect.
The direct use of threshold values is not very common in practical work, which
most often focuses on n-best lists where n is determined a priori by external
requirements. 3 In the paper, we will therefore concentrate on (b), which is
equivalent to (a) for a suitably chosen threshold (ignoring the possibility that
there may be ties in the ranking). Procedure (c) can also be seen as equivalent
to (b), except that it does not use a pre-determined size for the n-best list
(instead, n is determined interactively by the annotator). Some collocation
extraction methods apply various filtering techniques to reduce the size of the
candidate set (e.g. Smadja, 1993). Although these methods do not result in a
ranking of the candidates, they are directly comparable with the n-best lists
of AMs, provided that n is chosen to match the number of candidates that re-
main after filtering. In this way, our evaluation procedure can also be applied
to such methods.

From theoretical discussions, log-likelihood (Dunning, 1993) emerged as a sta-
tistically sound measure of association. Since it is also convenient in prac-
tical work, it has become popular as an all-purpose measure in computa-
tional linguistics. Even though most evaluation experiments have confirmed
log-likelihood as the most useful AM for collocation extraction so far (specif-
ically Daille (1994), Lezius (1999), and Evert et al. (2000)), sorting by mere
cooccurrence frequency (without a sophisticated statistical analysis) has also
led to surprisingly good results. However, Krenn (2000) found the t-score mea-
sure (Church et al., 1991) to be optimal for the extraction of German PP-verb
collocations (which she defined as figurative expressions and Funktionsver-
bgefüge) from newspaper text and Usenet group discussions. On these data,
the log-likelihood ranking was significantly worse than simple frequency sort-
ing for n-best lists with n ≥ 2000 (see Evert and Krenn, 2001). This example
shows that log-likelihood may not always be the best choice. On the other
hand, measures such as MI and t-score, which are widely used in computa-
tional lexicography, will be suboptimal for most other tasks. With a felicitous
choice of measure, it is often possible to improve substantially on frequency
sorting, log-likelihood and other standard AMs (e.g. Krenn and Evert, 2001).
The practical usefulness of individual AMs depends on such different issues
as the type of collocation to be extracted, domain and size of the source cor-
pora, the tools used for syntactic pre-processing and candidate extraction, and
the amount of low-frequency data excluded by setting a frequency threshold.
Therefore, only an empirical evaluation can identify the best-performing AM

3 One exception is the work of Church and Hanks (1990), who use an empirically
determined threshold for the MI measure to select collocation candidates. In a later
publication, this procedure is augmented by a theoretically motivated threshold for
the t-score measure (Church et al., 1991).
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under a given set of conditions.

1.2 Our Approach in a Nutshell

Step 1 of the proposed evaluation procedure is the extraction of lexical tuples
from the text corpus. In step 2, the AMs under investigation are applied to
the lexical data. In step 3, the candidate data are manually evaluated by a
human annotator. Each candidate is marked as a true positive (TP) or false
positive (FP). Finally, the AMs are evaluated against this manually annotated
data set by computing the precision and recall of the respective n-best lists.

There are two major reasons why a meaningful evaluation of AMs requires
manual annotation of the candidate data. (1) No existing lexical resource
can be fully adequate for the description of a new corpus (i.e. any corpus
that did not serve as a basis for the compilation of the resource). This ar-
gument is similar to the case made for lexical tuning by Wilks and Catizone
(2002) with respect to word senses. Some researchers have tried to circum-
vent manual annotation of the candidate data by using a paper dictionary or
machine-readable database as a “gold standard”. Unfortunately such a gold
standard necessarily provides only partial and inadequate coverage of the true
collocations that will be found in a corpus. (2) Nowadays dictionaries become
increasingly corpus-based. This poses the additional danger of introducing a
bias in favour of whichever association measure or other method was used to
extract collocation candidates for the dictionary.

Irrespective of the (non)generalizability of AMs, manual annotation of the
candidate data is an expensive and time-consuming task. Random sample
evaluation helps to reduce the amount of manual annotation work drastically.
To do so, in step 3 of our evaluation procedure we use a random sample of
the candidate data for manual annotation instead of the full set. The most
appropriate AM(s) for the given extraction task and the complete extraction
corpus can then be predicted on the basis of this random sample. After de-
scribing the mathematical background of the RSE procedure and appropriate
tests for the significance of results, we illustrate its utility with an evaluation
of German PP-verb pairs (Krenn, 2000). This example shows that the RSE
results are comparable to those of a full evaluation. A second example, carried
out on German adjective-noun data, provides further evidence for the neces-
sity of repeated evaluation experiments, especially as the results obtained on
the adjective-noun data contradict those of the PP-verb data. 4

4 The RSE procedure for the evaluation of AMs is implemented as an R library in
the UCS toolkit, which can be downloaded from http://www.collocations.de/.
All evaluation graphs in this paper (including confidence intervals and significance
tests) were produced with the UCS implementation. R is a freely available program-
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In such a situation – where it is difficult to generalize evaluation results over
different tasks and corpora, and where extensive and time-consuming manual
inspection of the candidate data is required – RSE is an indispensable means
to make many more and more specific evaluation experiments possible.

Section 2 is dedicated to the empirical evaluation of measures for collocation
extraction. In Section 2.1, we present a general procedure for manual evalu-
ation, which is then applied to a selection of AMs and the task of extracting
collocations from German PP-verb data (Section 2.2). In the following, we
argue that only an evaluation based on random samples (RSE) allows us to
study the usefulness of AMs in a wide range of situations. Section 3 presents
the mathematical details of the evaluation procedure. First, we introduce a
formal notation for the evaluation process (Section 3.1), followed by an expla-
nation of the RSE method (Section 3.2). Finally, we address the sampling error
introduced by the use of random samples, resulting in confidence regions for
n-best precision graphs (Section 3.3) and statistical tests for the significance
of performance differences between AMs (Section 3.4).

2 Evaluation

2.1 General Strategy

Step 1: Extraction of lexical tuples. Lexical tuples are extracted from a
source corpus, and the cooccurrence frequency data for each candidate type
are represented in the form of a contingency table. For instance, consider
German preposition-noun-verb (PNV) triples, which we use to illustrate the
evaluation procedure in Section 2.2. As most AMs are designed for word pairs,
we interpret the PNV triples as PP-verb pairs, represented by the combination
(P+N,V). 5 For each pair type (p+n,v), we classify the pair tokens (P+N,V)
extracted from the corpus into a contingency table with four cells, obtaining
the following frequency counts: 6

O11 := f(P = p, N = n, V = v) O12 := f(P = p, N = n, V 6= v)

O21 := f(P 6= p, N 6= n, V = v) O22 := f(P 6= p, N 6= n, V 6= v)
(1)

ming language and environment for statistical computing (cf. R Development Core
Team, 2003).
5 Note that this pairing (rather than e.g. (N, P+V)) is motivated both by the
syntactic structure of the PNV triples and by the properties of support-verb con-
structions (Funktionsverbgefüge), where the verb typically indicates Aktionsart.
6 The notation Oij for the cell frequencies follows Evert (2004a). Note that we use
upper-case letters (P,N,V) as variables for word tokens and lower-case letters (p,n,v)
as variables for word types, again following Evert (2004a).
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Step 2: Application of the association measures. AMs are applied to
the frequency information collected in the contingency table. The result is a
candidate list of pair types and their associated AM scores. For each individual
AM, the candidate list is ordered from highest to lowest score. Since, by the
usual convention, higher scores indicate stronger statistical association (which
is interpreted as evidence for collocativity) we use the first n candidates from
each such ranking. There will often be ties in the rankings, which need to be
resolved in some way in order to select exactly n candidates. For the evaluation
experiments, we break ties randomly to avoid biasing the results (cf. page 10).

Step 3: Manual annotation. In order to assess the usefulness of each in-
dividual AM for collocation extraction, the (ranked) candidate lists are com-
pared to a gold standard. The more true positives (TP) there are in a given
n-best list, the better the performance of the measure. This performance is
quantified by the n-best precision and recall of the AM. 7 For a predefined list
size n, the main interest of the evaluation lies in a comparison of the precision
achieved by different AMs, while recall may help to determine a useful value
for n. Evaluation results for many different list sizes can be combined visually
into a precision plot as shown in Figure 1, Section 2.3. 8

2.2 Evaluation Experiment: Data

For illustration of the proposed evaluation strategy, we consider PP-verb com-
binations extracted from an 8 million word portion of the Frankfurter Rund-
schau corpus. 9

Step 1: Extraction of lexical tuples. Every PP, represented by the prepo-
sition P and the head noun N, is combined with every main verb V that occurs
in the same sentence. For instance, the combination of P=in, N=Frage, and
V=stellen occurs in 146 sentences. 80% of the resulting 294 534 PNV combina-

7 Let t(n) be the number of TPs in a given n-best list and t the total number of
TPs in the candidate set. Then the corresponding n-best precision is defined as
p := t(n)/n and recall as r := t(n)/t. Note that precision and recall are closely
related: p = rt/n (see also page 11).
8 Precision-by-recall plots are the most intuitive mode of presentation (see Evert,
2004b, Sec. 5.1). However, they can be understood as mere coordinate transforma-
tions of the original precision plots, according to the equation r = np/t. It is thus
justified to consider only precision plots in this paper.
9 The Frankfurter Rundschau (FR) Corpus is a German newspaper corpus, com-
prising ca. 40 million words of text. It is part of the ECI Multilingual Corpus 1
distributed by ELSNET. ECI stands for European Corpus Initiative, and ELSNET
for European Network in Language And Speech. See http://www.elsnet.org/
resources/ecicorpus.html for details.
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tions (lemmatized pair types) occur only once in the corpus (f = 1), another
15% occur twice (f = 2), and only 5% have occurrence frequencies f ≥ 3.
This illustrates the Zipf-like distribution of lexical tuples that was mentioned
in Section 1. For the evaluation experiment, we use the 14 654 PNV types with
f ≥ 3 as candidates for lexical collocations. We refer to them as the pnv-fr
data set throughout the article. 10 For each (p+n,v) pair type in the pnv-fr
data set, the frequency counts for the cells O11, O12, O21, O22 of the contin-
gency table are determined according to Eq. (1). In the example above, there
are O11 = 146 cooccurrences of in Frage stellen, O12 = 236 combinations of in
Frage with a different verb, O21 = 3 901 combinations of stellen with a different
PP, and the total number of pair tokens is N = O11+O12+O21+O22 = 406 159.

Step 2: Application of the association measures under investigation to
the frequency information in the contingency tables. For the illustration exper-
iment, the measures tested are two widely-used AMs – t-score (Church et al.,
1991) and log-likelihood (Dunning, 1993) – as well as Pearson’s chi-squared
test (with Yates’ correction applied) and plain cooccurrence frequency. The
chi-squared test is considered as the standard test for association in contin-
gency tables, but has not found widespread use in collocation extraction tasks
(although it is mentioned by Manning and Schütze (1999)). Every AM assigns
a specific value to each PNV type in the pnv-fr data set. Thus we obtain
four different orderings of the candidate set.

Step 3: Manual annotation. In the semi-automatic extraction process, the
candidate set is passed on to a human annotator for manual selection of the
true collocations. For the purposes of an evaluation experiment, each candidate
is marked as a true positive (TP) or false positive (FP). The pnv-fr data set
has been annotated according to the guidelines of Krenn (2000). 11

2.3 Evaluation Experiment: Results

Figure 1 displays precision graphs for n-best lists on the pnv-fr data set,
ranked according to t-score, log-likelihood, chi-squared and frequency. The
baseline of 6.41% is the proportion of collocations in the entire candidate set,
i.e. the total number of TPs (939) divided by the total number of collocation
candidates (14 654). The x-axis covers all possible list sizes, up to n = 14 654.
Evaluation results for a specific n-best list can be reconstructed from the

10 See Krenn (2000) and Evert and Krenn (2001) for a detailed description. Evert
(2004b, Ch. 4) gives a theoretical justification for a frequency threshold of f ≥ 3.
11 Annotation of true collocations is a tricky task that requires expert annotators,
especially as the borderline between collocations and non-collocational word com-
binations is often fuzzy. See Krenn et al. (2004) for a discussion of intercoder agree-
ment on PP-verb collocations in the pnv-fr data set.
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plot, as indicated by thin vertical lines for n = 1 000, n = 2 000 and n =
5 000 (which are also shown in Figure 2). From the precision graphs we see
that t-score clearly outperforms log-likelihood for n ≤ 6 000. Even simple
frequency sorting is better than log-likelihood in the range 2 000 ≤ n ≤ 6 000.
Chi-squared achieves a poor performance on the pnv-fr data and is hardly
superior to the baseline, which corresponds to random selection of candidates
from the data set. This last observation supports Dunning’s claim that the chi-
squared measure tends to overestimate the significance of (non-collocational)
low-frequency cooccurrences (Dunning, 1993). Figure 1 also shows that the
precision of AMs (including frequency sorting) typically decreases for larger n-
best lists, indicating that the measures succeed in ranking collocations higher
than non-collocations, although the results are far from perfect. Of course, the
precision of any AM converges to the baseline for n-best lists that comprise
almost the entire candidate set. In our example, the differences between the
AMs vanish for n ≥ 8 000 and larger lists are hardly useful for collocation
extraction (all measures have reached a recall of approx. 80% for n = 8 000).
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Fig. 1. Evaluation of association measures with precision graphs.

The data in Figure 1 clearly show that log-likelihood, despite its success in
other evaluation studies and despite its wide-spread use, is not always the
best choice. To make a reliable recommendation for an AM that is suitable
for a particular purpose, an empirical evaluation has to be carried out under
conditions that are as similar as possible to those of the intended use. The
evaluation has to be repeated whenever a novel use case arises, because the
performance of a particular AM cannot be predicted from the mathematical
theory, and the evaluation results cannot be generalized to a substantially
different extraction task.

In most cases, a manual annotation of true positives is necessary, although
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some researchers have tried using existing dictionaries as a “gold standard”
(e.g. Pearce, 2002). Since manual coding is a time-intensive (and often ex-
pensive) task, only a few large-scale evaluations have been carried out so far
(Daille, 1994; Krenn, 2000; Evert et al., 2000). In addition, there are some
small case studies such as Breidt (1993), Lezius (1999), and several articles
where the usefulness of a newly-suggested AM is supported by a short list
of extracted collocation candidates (e.g. Dunning, 1993). In order to cover a
wide range of settings, a method is needed that reduces the required amount
of manual annotation work drastically. This is achieved by annotating only
a random sample selected from the full set of candidates, and estimating the
true precision graphs from the sampled data. Especially for large-scale extrac-
tion tasks, it can also be useful to carry out a preliminary evaluation (based
on a very small sample) on the data set that will be used for semi-automatic
collocation extraction. We refer to this procedure as tuning of AMs.

In the remainder of this paper, we argue that RSE is an appropriate means
(a) to predict the n-best precision of a given AM, and (b) to select the best-
performing AM from two or more alternatives (typically a range of well-known
and tested AMs such as log-likelihood, chi-squared, and t-score). In doing so,
we establish RSE as a viable alternative to full evaluation, and we demonstrate
its potential for AM tuning. Further research is necessary in order to determine
whether the improvements achieved by tuning will outweigh the additional
effort of the preliminary RSE step.

Concerning (a), the methods described in Section 3.3 yield a confidence inter-
val for the true precision value, which gives a general indication of whether
the results of the extraction procedure will be good enough for the intended
use. For instance, lexicographers are interested in candidate lists that contain
a fairly large amount of TPs, but the results need not be perfect. Thus it is
important to know whether a certain AM can improve on the baseline preci-
sion: if the estimated precision is not substantially better than the baseline,
there is little point in the application of statistical methods. The RSE esti-
mates for different n-best lists and the corresponding confidence intervals can
be combined into a precision graph similar to Figure 1. This graph can also
help to determine an appropriate list size n, e.g. where the estimated precision
drops below a useful threshold.

Concerning (b), it is obvious that, for a given list size n, the AM that achieves
the highest n-best precision in the RSE should be used. However, any other
AM that is not significantly different from the best measure may achieve equal
or better precision on the full n-best list. Section 3.4 details the necessary sig-
nificance tests. Significant differences between two AMs can then be marked
in the precision graphs. It will rarely be possible to find an AM that is signif-
icantly better than its competitors for all n-best lists, though.
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3 Random sample evaluation

3.1 Notation

Before describing the use of random samples for evaluation, we need to intro-
duce a formal notation for the evaluation method described in Section 2. Let C
be the set of candidates, and S := |C| its size. 12 For the pnv-fr data set, we
have S = 14 654 and an example of an element x ∈ C is the (p+n,v) pair type
x = (in+Frage, stellen) representing the German collocation in Frage stellen
“call into question”. For each candidate pair x, an AM g computes a real
number from the corresponding contingency table, called an association score.
The actual values of the scores are rarely considered, though (see Footnote 3
on page 3 for an exception). Normally, only the ranking of the candidates
according to the association scores is of importance. Since there is usually a
substantial number of candidates whose contingency tables are identical (and
candidates with different tables may occasionally obtain the same scores), the
ranking will almost always contain ties. In order to determine n-best lists that
include exactly the specified number of candidates (and are thus directly com-
parable between different measures), the ties need to be broken by random
ordering of candidates with identical scores. 13

Since the actual scores are normally discarded and ties are broken by random
selection, we can represent an AM g by a ranking function g : C → {1, . . . , S}
(with respect to the candidate set C). This function assigns a unique number
g(x) to each candidate x, corresponding to its rank. An n-best list Cg,n for the
measure g contains all candidates x with rank g(x) ≤ n, i.e.,

Cg,n := {x ∈ C | g(x) ≤ n} (2)

for n ∈ {1, . . . , S}. By definition, |Cg,n| = n (since all ties in the rankings have
been resolved). Manual annotation of the candidates results in a set T ⊆ C of
true positives, which forms the basis of the evaluation procedure. The baseline
precision b is the proportion of TPs in the entire candidate set: b := |T | / |C|.
For any subset A ⊆ C, let k(A) := |A ∩ T | denote the number of TPs in A
(A∩T is the set of TPs that belong to A). The true precision p(A) of the set A
is given by p(A) := k(A)/ |A|, and the recall is given by r(A) := k(A)/ |T |. We
are mainly interested in the true precision of n-best lists (i.e. with A = Cg,n),

12 |C| stands for the cardinality of the set C, i.e. the number of candidates that it
contains.
13 A similar strategy, viz. randomization of hypothesis tests, is used in mathematical
statistics for the study and comparison of hypothesis tests when the set of achievable
p-values is highly discrete (see e.g. Lehmann, 1991, 71–72).
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for which we use the shorthand notation kg,n := k(Cg,n) and

pg,n := p(Cg,n) = kg,n/n . (3)

Note that the baseline precision b can be obtained by setting A = C, i.e.
b = p(C). The plot in the left panel of Figure 2 displays the n-best precision
pg,n achieved by four different AMs for n ranging from 100 to 5 000. 14 It is a
“zoomed” version of the left third of the precision plot in Figure 1.

As was pointed out in Section 2, the main object of interest for the evalua-
tion of AMs is the true n-best precision pg,n. It is used to identify the best-
performing measure g∗ for given n and to compare its precision pg∗,n with the
baseline b. Unless pg∗,n is significantly larger than b, there is no point in the
application of AMs to rank the candidate set. Note that the n-best recall rg,n

is fully determined by the corresponding precision pg,n and can be computed
according to the formula rg,n = pg,nn/bS. Consequently, it does not provide
any additional information for the evaluation, and neither does the F -score. 15

Precision graphs visually combine the results obtained for many different n-
best lists, but one has to keep in mind that they are mainly a presentational
device. It is not the goal of the evaluation to find an AM that achieves optimal
results for all possible n-best lists (i.e. whose precision graph is “above” all
other graphs), and this will rarely be possible (cf. Figure 1).

3.2 Evaluation of a random sample

To achieve a substantial reduction in the amount of manual work, only a ran-
dom sample R ⊆ C is annotated. The ratio |R| / |C| is called the sampling
rate, and will usually be comparatively small (10% – 20%). 16 Since the man-
ual annotation now identifies only those TPs which happen to belong to the
sample R, i.e. the set T ∩ R, it is necessary to estimate the full set T by sta-
tistical inference. As a first result, we obtain a maximum-likelihood estimate
b̂ for the baseline precision, which is given by the proportion of TPs in the
random sample: b̂ := |T ∩R| / |R|. In the same manner, we can estimate the

14 The four measures are g1=t-score, g2=log-likelihood, g3=frequency-based rank-
ing, and g4=chi-squared. Precision values for n < 100 were omitted because of their
large random fluctuations, which result in highly unstable graphs.
15 The F -score is defined as the harmonic mean between precision and recall. It is
often used for the evaluation of information retrieval tools, part-of-speech taggers,
etc. in order to strike a balance in the tradeoff between high precision and high
recall. In our application, however, this tradeoff is pre-empted by the choice of a
specific list size n.
16 Some remarks on how to choose the sampling rate can be found in Section 3.5.

11



true precision p(A) of any subset A ⊆ C by the ratio

p̂(A) :=
|A ∩ T ∩R|
|A ∩R|

=
k̂(A)

n̂(A)
, (4)

which is called the sample precision of A. We use the shorthand notation n̂(A)
for the number of candidates sampled from A, and k̂(A) for the number of
TPs found among them. Correspondingly, an estimate for the n-best precision
pg,n of an AM g is given by

p̂g,n := p̂(Cg,n) =
k̂g,n

n̂g,n

(5)

Note that the number n̂g,n of annotated candidates in Cg,n (which appears
in the denominator of (5)) does not only depend on n (as in the definition
of pg,n, cf. (3)), but also on the particular choice of the random sample (the
random sample picks a specified number of candidates from the full set C, but
the number that falls into Cg,n is subject to random variation). Consequently,
n̂g1,n and n̂g2,n will usually be different for different measures g1 and g2. We
return to this issue in Section 3.3.
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Fig. 2. An illustration of the use of random samples for evaluation: precision graphs
for the full pnv-fr data set (left panel) and the corresponding estimates obtained
from a 10% sample (right panel).

The right panel of Figure 2 shows graphs of p̂g,n for n ≤ 5 000, estimated from
a 10% sample of the pnv-fr data set. Note that the x-coordinate is n, not
n̂g,n. The baseline shown in the plot is the estimate b̂. The thin dotted lines
above and below indicate a confidence interval for the true baseline precision
(cf. Section 3.3). From a comparison with the true precision graphs in the left
panel, we see that the overall impression given by the RSE is qualitatively
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correct: t-score emerges as the best measure, mere frequency sorting outper-
forms log-likelihood (at least for n ≥ 4 000), and chi-squared is much worse
than the other measures, but is still above the baseline. However, the find-
ings are much less clear-cut than for the full evaluation; the precision graphs
become unstable and unreliable for n ≤ 1000 where log-likelihood seems to
be better than frequency and chi-squared seems to be close to the baseline.
This is hardly surprising considering the fact that these estimates are based
on fewer than one hundred annotated candidates.

3.3 Confidence regions

In the interpretation of the RSE graphs, we use the sample precision p̂g,n as
an estimate for the true n-best precision pg,n. Generally speaking, p̂(A) serves
as an estimate for p(A), for any set A ⊆ C of candidates. The value p̂(A)
will differ more or less from p(A), depending on the particular sample R that
was selected. The difference p̂(A)− p(A) is called the sampling error of p̂(A).
We need to take this sampling error into account by constructing a confidence
interval Π̂(A) for the true precision p(A), as described e.g. by Lehmann (1991,
89ff). At the customary 95% confidence level, the risk that p(A) /∈ Π̂(A)
(because the selected sample R happens to contain a particularly large or small
proportion of the TPs in A) is 5%. In order to define a confidence interval,
we need to understand the relation between p(A) and p̂(A), i.e., the sampling
distribution of p̂(A). For notational simplification, we omit the parenthesized
argument in the following discussion, writing p := p(A), p̂ := p̂(A), k̂ := k̂(A),
etc. In addition, we write n := |A| for the total number of candidates in A.

The sample estimate p̂ is based on n̂ candidates that are randomly selected
from the n candidates in A. In other words, p̂ is a random variable whose
sampling distribution depends on the true precision p, i.e. p is a parameter of
the distribution. Our goal is to make inferences about the parameter p from
the observed value of the random variable p̂. However, p̂ = k̂/n̂ also depends
on the number of candidates sampled, which is itself a random variable.

In contrast to k̂ and p̂, n̂ is a so-called ancillary statistic, whose sampling
distribution is independent from the parameter p. 17 Since the particular value
of n̂ does not provide any information about p, we will base our inference on the
conditional distribution of p̂ given the observed value of n̂, i.e. on probabilities
P (p̂ | n̂) rather than P (p̂). These conditional probabilities are equivalent to the
probabilities P (k̂ | n̂) because k̂ = p̂ · n̂. Assuming sampling with replacement,

17 See Lehmann (1991, 542ff) for a formal definition of ancillary statistics and the
merits of conditional inference.
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we obtain a binomial distribution with success probability p, i.e.

P
(
k̂ = j

∣∣∣ n̂) =

(
n̂

j

)
pj (1− p)n̂−j. (6)

From (6), we can compute a confidence interval Π̂ for the parameter p based on
the observed values k̂ and n̂ (see Lehmann, 1991, 89ff). The size of this interval
depends on the number n̂ of candidates sampled and the required confidence
in the estimate. Binomial confidence intervals can easily be computed with
software packages for statistical analysis such as the freely available program
R (R Development Core Team, 2003).

We have assumed sampling with replacement above in order to simplify the
mathematical analysis, although R ⊆ C is really a sample without replacement
(since R is a subset which may not contain duplicates). For a sample without
replacement, (6) would have to be replaced by a hypergeometric distribution
with parameters k (the total number of TPs in A) and n− k (the total num-
ber of TPs in C \ A). While binomial confidence intervals can be computed
efficiently with standard tools, similar confidence sets for p = k/n based on
the hypergeometric distribution would require a computationally expensive
custom implementation. The binomial distribution provides a good approxi-
mation of the hypergeometric, given that the sampling rate (n̂/n ≈ |R| / |C|)
is sufficiently small. When one is worried about this issue, it is always possible
to simulate sampling with replacement on the computer. The resulting sample
is a multi-set R′ in which some candidates may be repeated. In practice, each
candidate will be presented to the human annotators only once, of course.
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Fig. 3. Confidence intervals for the true precision pg,n. The solid lines show the
sample estimate p̂g,n, and the dashed lines show the true values of pg,n computed
from the full candidate set.

Setting A = C, we obtain a confidence interval Π̂(C) for the baseline precision
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b. This interval is indicated in the right panel of Figure 2 (and subsequent
RSE graphs) by the thin dotted lines above and below the estimated baseline
b̂. Setting A = Cg,n, we obtain a confidence interval Π̂g,n := Π̂(Cg,n) for
the n-best precision pg,n of an AM g. Such confidence intervals are shown
in Figure 3 as shaded regions around the sample-based precision graphs of
t-score (left panel) and chi-squared (right panel). By the construction of Π̂g,n,

we are fairly certain that pg,n ∈ Π̂g,n for most values of n, but we do not
know where exactly in the interval the true precision lies. In other words, the
confidence intervals represent our uncertainty about the true precision pg,n. For
instance, the RSE shows that t-score is substantially better than the baseline
and reaches a precision of at least 20% for n-best lists with n ≤ 2000. We
can also be confident that the true precision is lower than 20% for n ≥ 4000.
However, any more specific conclusions may turn out to be spurious. For the
chi-squared measure, we cannot even be sure that its performance is much
better than the baseline, although pg,n may be as high as 20% for small n.

For comparison, the true n-best precision is indicated by a dashed line in
both graphs. As predicted, it always lies within the confidence regions. For
t-score, the difference between pg,n and p̂g,n happens to be much smaller than
the confidence intervals imply. On the other hand, the true n-best precision of
chi-squared is close to the boundary of the confidence intervals for n ≥ 2000.
This example illustrates that the uncertainty inherent the sample estimates is
in fact as large as indicated by the confidence intervals.

3.4 Comparison of association measures

The confidence intervals introduced in Section 3.3 allow us to assess the use-
fulness of individual AMs by estimating their n-best precision and comparing
it with the baseline. However, the main goal of the evaluation procedure is the
comparison of different AMs, in order to identify the best-performing mea-
sure for the task at hand. As we can see from the left panel of Figure 4, the
confidence regions of the t-score and log-likelihood measures overlap almost
completely. Taken at face value, this seems to suggest that the RSE does
not provide significant evidence for the better performance of t-score on the
pnv-fr data set. The true precision may well be the same for both measures.
Writing g1 for the t-score measure and g2 for log-likelihood, the hypothesis
pg1,n = pg2,n =: p is consistent with both sample estimates (p̂g1,n and p̂g2,n) for

any value p in the region of overlap, i.e. p ∈ Π̂g1,n ∩ Π̂g2,n.

This conclusion would indeed be correct if p̂g1,n and p̂g2,n were based on in-
dependent samples from Cg1,n and Cg2,n. However, there is usually consid-
erable overlap between the n-best lists of different measures (for instance,
the 2 000-best lists of t-score and log-likelihood share 1 311 candidates). Both
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Fig. 4. Comparison of the t-score and log-likelihood measures.

samples select the same candidates from the intersection Cg1,n∩Cg2,n (namely,
Cg1,n ∩ Cg2,n ∩ R), and will consequently find the same number of TPs. Any
differences between p̂g1,n and p̂g2,n can therefore only arise from the difference
sets Cg1,n \ Cg2,n =: D1 and Cg2,n \ Cg1,n =: D2.

Setting A = Di for i = 1, 2, it follows from the argument in Section 3.3 that the
conditional probability P (k̂(Di) | n̂(Di)) has a binomial distribution (6) with
success probability p(Di). Since D1∩D2 = ∅, the samples from D1 and D2 are
independent, and so are the two distributions. Furthermore, pg1,n > pg2,n iff
p(D1) > p(D2), and vice versa. Our goal for the comparison of two AMs is thus
to find out whether the RSE provides significant evidence for p(D1) > p(D2)
or p(D1) < p(D2). To do so, we have to carry out a two-sided hypothesis test
with the null hypothesis H0 : p(D1) = p(D2). Since the sample sizes n̂(D1)
and n̂(D2) may be extremely small (depending on the amount of overlap),
asymptotic tests should not be used. 18 Exact inference for two independent
binomial distributions is possible with Fisher’s exact test (Fisher, 1970, 96f
(§21.02)), which is applied to the following contingency table:

k̂(D1) k̂(D2)

n̂(D1)− k̂(D1) n̂(D2)− k̂(D2)

Implementations of Fisher’s test are available in most statistical software pack-
ages, including R. In the right panel of Figure 4, the grey triangles indicate
n-best lists where the RSE provides significant evidence that the true preci-
sion of t-score is higher than that of log-likelihood (according to a two-sided

18 A standard test for equal success probabilities of two independent binomial dis-
tributions is Pearson’s chi-squared test. This application of the test should not be
confused with its use as an association measure.
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Fisher’s test at a 95% confidence level). Despite the enormous overlap be-
tween the confidence intervals, the observed differences are (almost) always
significant for n ≥ 3000.

3.5 A second example and some final remarks

Figure 5 shows another example of an RSE evaluation. Here, German adjective-
noun combinations were extracted from the full Frankfurter Rundschau Cor-
pus, using part-of-speech patterns as described by Evert and Kermes (2003),
and a frequency threshold of f ≥ 20 was applied. From the resulting data set
of 8 546 candidates, a 15% sample was manually annotated by professional
lexicographers (henceforth called the an-fr data set). 19 In contrast to the
pnv-fr data, which uses a linguistically motivated definition of collocations,
the annotators of the an-fr data set also accepted “typical” adjective-noun
combinations as true positives when they seemed useful for the compilation of
dictionary entries, even if these pairs would not be listed as proper collocations
in the dictionary. Such a task-oriented evaluation would have been impossible
if an existing dictionary had been used as a gold standard. The results of this
evaluation experiment are quite surprising in view of previous experiments and
conventional wisdom. Frequency-based ranking is not significantly better than
the baseline, while both t-score and log-likelihood are clearly outperformed by
the chi-squared measure, contradicting the arguments of Dunning (1993). For
1 000 ≤ n ≤ 3 000, the precision of chi-squared is significantly better than that
of log-likelihood.

Summing up, the evaluation examples for the pnv-fr and an-fr data sets
clearly show that the usefulness of individual AMs for collocation extraction
has to be determined by empirical evaluation under the specific conditions of
the intended use case. Results obtained in a particular setting cannot be gen-
eralized to different settings, and theoretical predictions (such as Dunning’s)
are often not borne out in reality. The RSE approach helps to reduce the
amount of work required for the manual annotation of true positives, making
evaluation experiments such as the adjective-noun example above possible.

One question that remains is the choice of a suitable sampling rate, which
determines the reliability of the RSE results, as given by the width of the
binomial confidence intervals Π̂g,n for the true n-best precision (Section 3.3).
Interestingly, this width does not depend on the sampling rate, but only on the
total number n̂g,n of candidates sampled from a given n-best list (and on the

19 We would like to thank the Wörterbuchredaktion of the publishing house Lan-
genscheidt KG, Munich for annotating this sample. The evaluation reported here
emerged from a collaboration within the project TFB-32, funded at the University
of Stuttgart by the DFG.
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Fig. 5. RSE of German adjective+noun combinations.

observed precision p̂g,n). Thus, a 20% sample from a 500-best list achieves the
same reliability as a 5% sample from a 2000-best list (since n̂g,n ≈ 100 in either
case). The RSE procedure can therefore also be applied to large n-best lists,
provided that they achieve sufficiently high precision. 20 The precise width of
the confidence intervals can be predicted with the help of a binomial confidence
interval chart (e.g. Porkess, 1991, 47, s.v. confidence interval). Unfortunately,
it is much more difficult to predict the sampling rate that is necessary for
differences between AMs to become significant (Section 3.4). The power of
Fisher’s test depends crucially on the amount of overlap between the two
measures being compared, i.e. on the number of candidates sampled from
the difference regions, n̂(D1) and n̂(D2). In addition, power calculations for
Fisher’s test are much more complex than in the binomial case.

4 Conclusion

With the random sample evaluation (RSE) we have presented a procedure
that makes the evaluation of association measures (AMs) for a specific type
of collocation and for a specific kind of extraction corpus practically feasible.
In this way, an appropriate AM can be selected depending on the application
setting, which would otherwise not be possible because the results of an eval-
uation experiment cannot easily be generalized to a different situation. Based

20 As a rule of thumb, estimates from small samples (n̂ ≈ 100) are of little use when
the observed precision p̂ drops below 20%. Larger samples (n̂ ≈ 500) extend the
useful range down to p̂ ≈ 10%.
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on a data set of German PP-verb combinations, we have shown that the RSE
allows us to estimate the precision achieved by individual AMs in this par-
ticular application. Using the RSE procedure to evaluate the same AMs on
a second data set of German adjective-noun combinations, we have collected
further evidence that the evaluation of AMs for collocation extraction is a
truly empirical task, obtaining results that contradict both widely-accepted
theoretical arguments and the results of previous evaluation experiments. In
the light of these findings, the RSE is indispensable as it allows researchers
and professional users alike to carry out many more evaluation experiments
by reducing the amount of manual annotation work that is required. Our find-
ings also demonstrate the potential for tuning AMs to a specific collocation
extraction task, based on the manual annotation of a very small sample from
the extracted data set. The RSE procedure for the evaluation of AMs is im-
plemented as an R library in the UCS toolkit, which can be downloaded from
http://www.collocations.de/. All precision graphs in this paper (includ-
ing confidence intervals and significance tests) were produced with the UCS
implementation.
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