
Combining Machine Learning and Semantic Features in
the Classification of Corporate Disclosures

Stefan Evert1, Philipp Heinrich1, Klaus Henselmann2, Ulrich Rabenstein3,
Elisabeth Scherr2, and Lutz Schršder3

1Dept. Germanistik und Komparatistik, FAU Erlangen-Nürnberg
2School of Business and Economics, FAU Erlangen-Nürnberg

3Dept. of Computer Science, FAU Erlangen-Nürnberg

Abstract

We investigate an approach of improving statistical text classiÞcation by combin-
ing machine learners with an ontology-based identiÞcation of domain-speciÞc topic
categories. We apply this approach to ad hoc disclosures by public companies. This
form of obligatory publicity concerns all information that might a ffect the stock
price; relevant topic categories are governed by stringent regulations. Our goal is to
classify disclosures according to their effect on stock prices (negative, neutral, pos-
itive). In the feasibility study reported here, we combine natural language parsing
with a formal background ontology to recognize disclosures concerning a particular
topic, viz. retirement of key personnel. The semantic analysis identiÞes such disclo-
sures with high precision and recall. We then demonstrate that machine learners
beneÞt from the additional ontology-based information in different prediction tasks.

1 Introduction

With the amount of electronically available information rising, there is increasing interest
in developing new means of assessing the semantics of corporate disclosures in order to
better handle the high information load. Prior research successfully explores the use of
textual analysis to predict stock performance (Bollen et al. 2010; Verchow 2011; Jegadeesh
and Wu 2013; Ding et al. 2015), often based on “big data” sources such as Twitter trends.
Although our use case also involves the prediction of an econometric variable, accurate
prediction of stock prices is not our main goal. The broader aim of our work is to extract
hidden information from financial texts; we therefore do not make use of additional data
sets such as social media to enhance the performance of our task solvers.

In the feasibility study reported here, we aim to improve the performance of a statis-
tical text classifier by integrating knowledge retrieved from the text by an ontology-based
reasoner. Our use case is the prediction of stock market reactions after the publication
of corporate events according to German law. In so-called ad hoc disclosures, companies
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have to report any important event that might affect the stock price. Although the rele-
vant types of events are essentially predefined by law,1 this information is not indicated
explicitly in the disclosures and has to be derived from the textual content.

Ad hoc disclosures are a suitable object of the investigation of combining machine
learning with ontological reasoning for two reasons: Firstly, these disclosures are supposed
to provide information relevant to the stock price and thus offer a straightforward task
for machine learning and evaluation (the prediction of stock prices from text). Secondly,
companies have an incentive to downplay negative events and hide them “between the
lines”. Aiming to reveal hidden indicators in the ad hoc disclosures, we focus entirely on
their textual content and do not make use of external information from social media or
other sources. This makes the prediction task fairly hard and it is thus astonishing that
our trained classifiers provide an effective trading strategy. Except for Verchow (2011),
who aims at analyzing capital market efficiency and whose unsophisticated computational
linguistic methodology leads to rather poor results, we are not aware of any prior work
that attempts stock market prediction from ad hoc disclosures.

2 Methodology

The present methodological section is structured as follows: Section 2.1 gives an overview
of our corpus, the target variable and the associated prediction task. Section 2.2 briefly
introduces the machine learning techniques and their evaluation; section 2.3 motivates
the necessity of creating an ontology and outlines its design. Section 2.4 concludes the
methodological part by explaining the different ways of integrating machine learners
with ontological features2; this section also presents further evaluation techniques for the
combination of machine learning (ML) with ontological information.

2.1 Data basis and prediction tasks

Corpus We use a sample of announcements of corporate events provided by the DGAP
service of the Equity Story AG. Our sample selection starts with over 80,000 mandatory
announcements of material events that have been disseminated via the DGAP between
mid-1996 and mid-2012. We restrict our analyses to those disclosures that are written in
English3 and that are machine-readable. Due to these constraints and further restrictions
on available metadata (see the following paragraph), we obtain a final corpus of 28,287
documents (“textual units”) such as the following example:

Montabaur, December 31, 2001. Michael Scheeren, CFO of United Internet AG
and with the company for 11 years, will retire from his position on the Executive
Board as of December 31, 2001. It is planned that he will replace Mr. Hans-Peter

1See the guideline issued by the Federal Financial Supervisory Authority (BaFin) (2009) for a list of
possible price-sensitive events.

2We call statistical classifiers and their ontologically enhanced versions more generally “task solvers”.
3German law requires the material event disclosures to be in German, in another accepted language

or in English depending on specific criteria.
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Bachmann on the Supervisory Board from January 1, 2002. Scheeren will retain
his close ties to the Group as he remains Chairman of the Supervisory Boards of
AdLINK AG, 1&1 Internet AG and twenty4help AG. He will also represent United
Internet AG on the Supervisory Boards of GMX AG, jobpilot AG and NTplus AG.
Mr. Norbert Lang has been named as successor for Michael Scheeren. Lang has
been with United Internet since 1994. After Þrst heading the Þnancial department,
he joined the United Internet Executive Board one year ago.

Figure 1: Distribution of the target vari-
able CAR in the corpus (excluding out-
liers with |CARit| > 50).

Target variable For each ad hoc disclosure
i, we measure its effect on the stock mar-
ket using an event study following prior lit-
erature (Strong 1992; McWilliams and Siegel
1997; Corrado 2011). In particular, the market
model is used to calculate the market-adjusted
stock return surrounding the disclosure date t
of the material event:

ARit = Rit�E(Rit) = Rit�(↵̂i+�̂i·RMt) (1)

Daily market-adjusted returns or abnormal re-
turns (ARit) are calculated as the deviation
between the observed stock return of each in-
dividual company (Rit) and the expected stock
return (E(Rit)). We use the return of the
CDAX index as a proxy for the market return
and estimate E(Rit) by regressing a historic
series of observed daily stock returns (Rit) on the corresponding daily market returns
(RMt) using ordinary least squares (OLS) estimation. The estimation period starts 6
days (t � 6) and spans up to 155 days (t � 155) prior to the event date. The estimated
intercept (↵̂i) and slope (�̂i) of the OLS model are then inserted into equation (1) to
calculate the abnormal return (ARit).

We use daily return index data from Thomson Reuters Datastream that is adjusted for
capital events (e.g., dividends, stock splits); daily returns are calculated as logarithmic
returns (i.e. as log (Vf/Vi) where Vi is the initial and Vf the final value; use of this
quantity is standard to ensure symmetry).4 In order to account for the fact that part of
the information relating to the event is priced early or late, we use an event window of
three trading days. Hence, the cumulative abnormal return (CARit) surrounding each
event announcement date (t) is calculated as the sum of the abnormal returns between one
day prior (t�1) and one day after (t+1) the disclosure of the event. The distribution of
the target variable is heavy-tailed, slightly skewed, and concentrates around 0 (cf. Figure
1).

Prediction tasks Although the target variable is metric, we abstain from regression
analysis for two reasons: Firstly, the data shows heavy tails, which makes it difficult

4Non-trading days are excluded.
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for regressors to find suitable weights. Secondly, it is far more important in practice
to distinguish between positive and negative reactions than to predict the exact degree
of the reaction. We hence set ourselves the prediction task of recognizing negative,
neutral and positive responses based on a ternary categorization (1/3 of disclosures each);
the categories are constructed by means of the respective quantiles of the empirical
distribution of CAR.

Since these artificially created categories are hard to distinguish for machine learners
– especially if the true CAR value is close to a category boundary – we also analyze the
performance of the task solvers in a slightly modified prediction task with more clear-
cut categories, i.e. ternary categorization into well-separated categories (20% of most
negative and most positive reactions and the 20% closest to the median). We thus refer
to the first one of these tasks as the di! cult prediction task and to its modified version
as the easy one (see Table 1 for an overview).

negative neutral positive corpus size
di! cult 9,433 9,436 9,418 28,287 (100%)
retirements 413 341 292 1046 (3.7%)
easy 5,661 5,645 5,648 16,954 (60%)
retirements 267 205 167 639 (3.8%)

Table 1: The two prediction tasks to be solved by the machine learning classifiers and
their combinations with ontological features. The easy prediction task is a slight mod-
ification of the di! cult one, involving more sharply separated categories. The rows
labeled retirements show the number of disclosures concerning key personnel turnover in
each category (cf. section 2.3).

2.2 ML classification

Our ML classifiers for solving the prediction tasks in table 1 are based on a simple
bag-of-words feature set (FM1, cf. section 2.4) with tf.idf weighting.5 After heuristic
deletion of boilerplate footers and headers, removal of stop words, e-mail addresses,
URLs, punctuation and numbers, as well as lower-casing and lemmatization, the resulting
feature vocabulary contains nvoc = 32,401 lemmas.

We present results for Multinomial Naïve Bayes (MNB) and Logistic Regression
(MaxEnt) with `1-penalty tuned by 10-fold cross-validation on the training set (for im-
plementation details see Pedregosa et al. 2011). Other machine learning algorithms such
as Support Vector Machines and a modified MNB used by Verchow (2011) yielded similar
results.

5Preliminary experiments including longer n-grams and part of speech tags in the feature matrices
did not lead to consistently higher performance.
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Evaluation of the ML approach We use accuracy in 10-fold stratified cross-validation
(90% training, 10% test data) as a performance measure and compute 95% confidence
intervals for the mean accuracy across all 10 folds (based on a normal approximation).
Since we have equally-sized categories and stratify the class distribution in the cross-
validation,6 a random baseline classifier achieves an accuracy of 1/3 = 33.3% in our
ternary classification tasks.

In order to demonstrate the practical usefulness of our ML approach, we also evaluate
the machine learning classifier by means of a simple trading strategy: (1) buying if the
ML approach predicts category positive, (2) short selling if it yields negative, and (3)
holding if the result is neutral. A scalar performance measure is given by the sum of
all individual net gains of CAR values.7 In this setting, we use constant classifiers that
always make the same decision as baselines.

2.3 Ontological feature extraction

Our idea is to use the semantic event categories that regulate the emission of disclosures
in the first place in order to improve the ML classifiers. Recall that the disclosures are
sent out for very specific reasons, but these are not explicitly mentioned in the text of
a disclosure or in the associated metadata. Although the boundaries between different
event categories are somewhat fuzzy, most of the disclosures are sent out for one particular
reason: manual analysis of a sample of 1,000 disclosures showed that only about 15% fall
into more than one topic category.

Motivation for ontological feature extraction The background information about
the initial reason to send out the disclosures is valuable and provides a different sort of
knowledge than the sort of “semantic information” that can be retrieved from the text
itself by unsupervised learning (e.g. automatic clustering of the disclosures). Techniques
such as Latent Dirichlet Allocation (LDA) or Latent Semantic Indexing are often found to
be helpful in text classification because they reduce the high-dimensional bag-of-words
feature space (with nvoc = 32,401 dimensions in our case) to a comparatively small
number of latent semantic dimensions. Machine learners are expected to perform better
because information is packaged more densely into the latent features and a smaller num-
ber of parameters needs to be trained. Exploratory tests showed that our ML classifier
does not benefit from such dimensionality reduction techniques, though.

We might also use the latent semantic information to pre-classify the disclosures into
meaningful categories, viz. the pre-defined set of approximately 40 topics regulating their
emission. As a matter of fact, the most prominent topic in our corpus (according to an
LDA model) with a mean latency of almost 25%8, is made up of rather generic lemmas

6That is to say: all categories contain equal numbers of disclosures in each fold of the cross-validation.
7The trading strategy rests on the assumption that we can buy or sell the shares after the material

event and thus indeed collect the net gain of CAR values.
8The result of an LDA is a probability vector for each document comprising the probabilities with

which each of the topics has contributed to the creation of the document. The “mean latency” of a topic
is thus the average probability of that topic across all documents.
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such as

product, service, technology, lead, position, agreement, new, future, work, so-
lution, system, customer, provide, production, subsidiary, focus, ceo, industry,
develop, and management.

The topic above could e.g. be interpreted as future products and contracts or alike, yet
there are clearly ambiguous and noisy terms such as ceo, industry, etc., which make the
interpretation very speculative. The second most prominent topic with more than 19%
mean latency contains the following lemmas:

earnings, previous, tax, ebit, figure, quarter, compare, profit, revenue, net,
positive, income, first, month, rise, increase, operating, ebitda, result, fiscal.

This topic points towards quarterly reports. However, neither of the topics point towards
a clearly recognizable reason for the emission of a disclosure.9 Furthermore, the distribu-
tion of LDA topics on the particulary interesting subset of disclosures that inform about
retirements (see the following section 2.3) is almost identical to their distribution on the
full corpus. The topics that can be retrieved from an LDA analysis thus do not help in
recognizing particular topics that can be identified manually.

We thus develop a formal ontology to retrieve meaningful semantic features. Since
this is expensive with regards to implemenation effort, we concentrate on one frequent
and particularly interesting category, namely disclosures concerned with the retirement
of key personnel.

NLP pre-processing The first step of operationalizing the corporate texts is a pre-
processing stage in which disclosures are analyzed using various off-the-shelf natural
language processing techniques, including part-of-speech tagging, morphological analy-
sis, named entity recognition, syntactic parsing, coreference resolution and word sense
disambiguation.

The Stanford CoreNLP suite (Manning et al. 2014) offers publicly available tools
for the first five tasks. They are part of a pipeline architecture, i.e. every component
can access the results of the previous components. For word sense disambiguation, we
use the algorithm described in Banerjee and Pedersen (2002) and the sense inventory of
the lexical semantic database WordNet (Miller 1995). In the ontological representation,
the disambiguated words are mapped to WordNet concepts (synsets10). The ontology
consists of three components:11

• A TBox capturing relations among concepts, essentially obtained by extracting
relevant information from WordNet for the terms encountered in the text.

• A manually maintained TBox capturing domain-specific background knowledge.
9See also Feuerriegel et al. (2015) for a more thorough analysis of the semantic space of ad hoc

disclosures.
10

Synsets are sets of synonyms representing a lexical semantic concept or word sense.
11

ABox and TBox are the assertion and terminological components of the ontology, respectively.
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• An ABox recording the content of the parsed disclosures, generated from the NLP
results.

We discuss these parts in more detail below.

Ontology creation from NLP results We first describe the automatically generated
parts of the ontology. It has to be emphasized that this ontology is not learned in any
sense; rather, the procedure is essentially aimed at transforming linguistically analyzed
texts into the Web Ontology Language (OWL), additionally taking into account lexical
semantic information from WordNet. WordNet information is provided in terms of a
chain of subclass or subproperty inclusions connecting the word form actually appearing
in a text to its synset identified by the word sense disambiguation module. E.g. for the
word form leaves (possibly indicating a retirement event) this takes the following shape
(Listing 1):

ObjectProperty : leave

ObjectProperty : leaves
SubPropertyOf : leave

ObjectProperty : 2383440_Leave_depart_pull_up_stakes
SubPropertyOf : leave

Listing 1: OWL representation of WordNet information for word form leaves.

The last, most specific object property relates to the synset corresponding to the relevant
sense of leaves. It is composed of the synset’s unique WordNet identifier (2383440),
followed by the list of all synonyms in the set (to ensure human readability).

As indicated above, the NLP results are transformed into an ABox. The default
procedure is to map subjects and objects of sentences, identified by the dependency
analysis, to individuals in the ABox, whereas the verbs connecting subjects and objects
become object properties. For prepositional objects, the preposition is made part of the
object property, which is then named in the form hverbi_hprepositioni. If the auxiliary
verb will is detected in connection with the verb (e.g. if the disclosure states that the
CEO will resign rather than that he has already resigned), the object property is named
announced_hXi, where X is the original name of the object property, and marked as
being a subproperty of both announced and X. Subjects and objects receive as a type
the concept generated from their synset according to the word sense disambiguation,
and receive as facts their mutual relationship as specified by the synset of the verb.
For example, the sentence John Doe leaves the company with the syntactic dependency
analysis in Figure 2 is translated into the ABox depicted in Listing 2.

Note that each syntactic dependency connects only two words. For compound nouns,
the rightmost noun is regarded as the head noun, and the other component nouns are
linked to the head noun via a compound relation. Compound nouns have to be recom-
posed from the syntactic dependencies, which results in the individual John Doe rather
than just Doe. Coreferences are resolved while creating the ontology, so facts referring
to a pronoun are attached to the corresponding individual.
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Figure 2: Dependency parse of John Doe leaves the company.

Individual : John_Doe
Types : Person
Facts : 2383440_leave_depart_pull_up_stakes company

Individual : company
Types : 8058098_Company

Listing 2: ABox representation of sentence John Doe leaves the company.

In this case, the types of the individuals are inferred from named entity recognition
(Person) and morphological analysis (Company). Appositions are also used to infer types:
the dependent of an apposition determines an additional type for its governor, and triples
describing the dependent are assigned to the governor. Prepositional triples are prefixed
by the dependent of the apposition. For instance, from the phrase John Doe, CFO of the
company, one obtains the dependency relations

appos(Doe, CFO) and of(CFO, company),

which extend the knowledge about John Doe in the way depicted in Listing 3.

The previous examples always contained the main piece of information, e.g. on some-
one leaving a company, or doing something in general, in a subject-predicate-object-like
structure. A sentence like “He announced the retirement of John Doe” does not fit
into this pattern. Therefore our system uses derivational relations from WordNet to
transform triples like of(retirement, John Doe) into a subject-predicate-object structure,
retire(John Doe, dummy). The dummy individual is needed because the intransitive verb
retire (from which retirement is derived) does not take an object. This type of normal-
ization simplifies querying the assertional knowledge parsed from the text in subsequent
steps.

Background knowledge The system is supported by a static, manually maintained
background ontology capturing general and domain knowledge that is not explicit in the

Individual : John_Doe
Types : Person, CFO
Facts : 2383440_leave_depart_pull_up_stakes company.

CFO_of company

Listing 3: Extended ABox for sentence John Doe leaves the company.
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Class : 9916601_chief_financial_o! cer_cfo
EquivalentTo : works_on some Cfo_position
SubClassOf : works_on exactly 1 Executive_board_position

Class : Cfo_leave1
EquivalentTo : leave some Cfo_position,

Cfo and leave some Executive_board_position

Class : Cfo_leave2
EquivalentTo : Cfo and (leave some Executive_board),

leave some Cfo_position

Class : leave3
EquivalentTo : (have some (Contract and expire some owl:Thing)),
SubClassOf : leave some Position

Class : leave4
EquivalentTo : agree some (Termination and (of some Mandate)),
SubClassOf : leave some Position

Class : leave5
EquivalentTo : submit some Resignation,
SubClassOf : leave some Position

Listing 4: Excerpt from the background ontology.

text of the disclosures. Some of the relevant facts are quite simple, e.g. that stepping
down is a form of leaving and that “Executive Board” and “Management Board” are
synonyms. Other axioms are more interesting and capture combinations of standard
jargon with basic knowledge of the domain. E.g. at the domain-specific level we include
axioms saying that CFOs work on exactly one executive board position, and that they
retire from their CFO position iff they retire from their executive board position.12 At a
less specific level there are axioms saying that, e.g., letting your contract expire, agreeing
to the termination of your mandate, and submitting your resignation all amount to
leaving your current position. The formulation of statements such as these is illustrated
in Listing 4.

Querying With the ontology in place, we can now detect disclosures concerning retire-
ment of key personnel by querying the ABox generated from the disclosure for persons
leaving from something. The formulation of the corresponding query is shown in List-
ing 5. The filter statements serve to eliminate multiple results that differ only in the
value of the ?leave variable, i.e. use different subproperties of leave but refer to the same
person and position. That is, the query is set up in such a way as to return only the
triples with the most specific object property as the instantiation for ?leave.

In case the query returns any result, the ad hoc disclosure is marked as containing
12The universal validity of these axioms may be debatable but since OWL does not incorporate default

reasoning, there appears to be no realistic way to ensure stricter accuracy.
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SELECT DISTINCT ?person ?leave ?objectWHERE {
?person ?leave ?object.
?person a :Person.
?leave rdfs :subPropertyOf :leave.
FILTER NOT EXISTS { ?person ?leave2 ?object.

?leave2 rdfs :subPropertyOf ?leave.
FILTER NOT EXISTS {?leave2 owl:equivalentProperty ?leave. }}}

Listing 5: The main query used to detect leaving persons.

a message about a retirement. In case the instantiation of ?leave is a subproperty of
announced, the disclosure is additionally annotated as being (only) an announcement.

Evaluation of the ontological approach The ontological detection of retirement
events and announcements among all ad hoc disclosures was tested on a set of 300
messages containing any inflected form of the words leave or retire. The disclosures were
categorized manually as retirement (178 messages) or non-retirement (122 messages).
The low baseline accuracy of 59.3% shows that the mere occurrence of the keywords
leave and retire is not a reliable predictor. Our algorithm obtained recall and precision
values of 90.4% and 97% for retirement events, respectively.13 Regarding the additional
property of retirements being only announced rather than already realized, 75 of 139
messages were successfully identified as (only) announcing at least one retirement, and
6 were falsely classified as (mere) announcements (recall 54%, precision 92.5%). It is,
of course, not entirely surprising that automated detection of the event (“retirement”)
as such works better than automated detection of the much more abstract question of
its factuality. Subsequent to these tests, we ran the ontological classifier on the whole
dataset of 28,287 disclosures, obtaining a set of 1,046 disclosures (ca. 3.7%) classified as
retirement events.

2.4 Integration methods

We now turn to equipping the ML classifiers with the ontologically extracted retirement
feature in order to improve their performance. Our idea is that the ontological informa-
tion about the types of material events that regulate the dissemination of the disclosures
in the first place can be used for splitting the overall problem into smaller sub-problems:
A machine learner trained solely on retirement disclosures is confronted with an easier
task than a system that does not have any information about the reasons for the dissem-
ination of the disclosures at hand; just as a human expert confronted with very specific
disclosures has an easier task than someone who is confronted with an unstructured bulk
of disclosures.

Our first combination of ML and ontology is by means of adding a single “retirement”
feature to the document-lemma feature matrix (FM2). However, since a single retirement

13161 of the 178 true retirement messages were detected correctly by the algorithm (true positives)
while 5 disclosures were incorrectly marked as retirements (false positives).
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feature can easily be overseen amongst other features, we experiment with a separation of
the vocabulary of the retirement disclosures from the vocabulary of non-retirements: If a
disclosure is recognized as a retirement by the ontological model, the string retirement
is appended to each lemma in the text (FM3).

This method has the disadvantage that the ML classifier cannot generalize informa-
tion about the general meaning of lemmas (e.g. risk or losses) gathered from the much
larger remainder of the corpus to the retirement disclosures. It is likely to underperform
in this setting because it is effectively restricted to a small training corpus. We thus
consider a third combination method that mirrors the retirement vocabulary (FM4):
All retirement disclosures now retain the original lemmas, but are complemented with
an additional retirement vocabulary. In the example disclosure above, lemmas such as
Montabaur

retirement

, CFO
retirement

, and company
retirement

are added without deleting the
original lemmas.

To put it in other words, the reasoning behind separate and mirrored vocabularies is
as follows: A single retirement feature might not be recognized efficiently by a machine
learner. A separate vocabulary, moreover, discriminates against retirement disclosures,
since the machine learner cannot exploit features from the much larger non-retirement
part of the training corpus for the retirements; as a result, the amount of training data
for lemmas in the retirement vocabulary is drastically reduced. A separate vocabulary is
equivalent to two separate machine learners being trained for the retirement disclosures
and the non-retirements, respectively. Last but not least, the retirement features are
weight adjustments in the case of the mirrored vocabulary: Here the machine learner
can learn features both on retirements and non-retirements and can then exploit this
knowledge for all disclosures. Including the basic feature matrix (FM1), there are thus
four feature matrices that can be used for prediction (see Table 2 for an overview).

features description nvoc

FM1 vanilla feature matrix without retirement feature 32,401
FM2 FM1 with a single additional retirement feature 32,402
FM3 FM1 with a separate vocabulary for the retirement disclosures 37,652
FM4 FM1 with a mirrored vocabulary for the retirement disclosures 38,762

Table 2: The four different feature matrices used for prediction.

Evaluation of integration methods Since the integration methods essentially differ
in feature matrices, they can be compared to the original classifiers (and their respective
baselines) in a straightforward manner by means of accuracy in 10-fold cross-validation.
Moreover, for retirement disclosures, another baseline is readily at hand: Since the retire-
ment feature is weakly yet significantly associated with the target variable, retirement
disclosures can be classified ontologically : The greater part of retirement disclosures lead
to a negative stock market reaction (cf. Table 1), so that the ontology already outperforms
the baseline by assigning the category negative to all retirement disclosures.
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3 Results and Discussion

Figure 3: Profit made by simple trading
strategy based on classification of disclo-
sures in the easy prediction task (task
solver: MaxEnt using FM1).

There are two kinds of effects to be analyzed:
Firstly, the effect of ontological information
on the prediction quality of task solvers can
be quantified. Secondly, one can observe how
the feature weights are affected by the addi-
tional information, which gives interesting in-
sights into the different usage of language in
particular discourse topic domains.

3.1 Prediction results

The complete results for the four prediction
tasks can be found in Tables 3 and 4 for the
hard and the easy prediction task, respectively.
The left hand tables show performance on the
whole corpus, the right hand table considers
solely retirement disclosures.14 One row of a
table shows the performance of the different
classifiers for given feature matrices. In most
cases, accuracy values are higher for MaxEnt
than for MNB. Comparing the different prediction tasks with one another, one can un-
surprisingly see that performance is higher in the case of clear-cut categories. Generally,
the machine learners consistently outperform the random baseline (33.3%) and the on-
tological baseline (which varies for each split into training and test corpus since we do
not stratify the number of retirement disclosures in the cross-validation).

For instance, MaxEnt with feature set FM1 significantly outperforms the 33.3% base-
line in the easy prediction task with an accuracy of 51.9% (± 1.9%). Moreover, Figure 3
shows substantial net gain when using MaxEnt with FM1 and applying the trading strat-
egy outlined in section 2.2: Compared to the baseline traders which always opt for sell
(base.neg) and buy (base.pos), respectively, the accumulated continuous returns of the
task solver result in a mean profit of more than 0.2% per disclosure and a considerable
increase of our start capital despite the simple approach.

More interestingly, one column of a table allows for comparison between the different
feature matrices. FM4 (mirrored vocabulary) consistently outperforms all the other
feature matrices. The effect is higher on the sub-corpus of retirements for the reasons
elaborated above. In the case of the retirement disclosures, it is worth mentioning that
the ontological baseline (predicting class negative for all retirement disclosures, given at
the bottom lines of the right hand panels of the performance tables 3 and 4) presents

14Since less than 4% of the disclosures deal with key personnel turnover in all prediction tasks, “zoom-
ing” onto the subcorpus of retirement disclosures is more likely to reveal the e" ect of including ontological
features.
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di! cult full retirements
MNB MaxEnt MNB MaxEnt

FM1 .437 (±.016) .456 (±.018) .395 (±.101) .426 (±.092)
FM2 .437 (±.016) .456 (±.016) .395 (±.101) .426 (±.092)
FM3 .437 (±.015) .456 (±.019) .429 (±.124) .414 (±.091)
FM4 .439 (±.014) .459 (±.025) .445 (±.106) .450 (±.128)
baseline 1/3 = .333 .396 (±.086)

Table 3: Performance (mean accuracy and 95% confidence interval) of the task solvers
in the difficult prediction task on the whole corpus (left panel) and on the subcorpus of
retirement disclosures (right panel), using different feature matrices (FM1–4). The naïve
baseline (majority classifier) is given by 1/3 = 33.3%, an improved (ontological) baseline
is given for the retirement corpus.

easy full retirements
MNB MaxEnt MNB MaxEnt

FM1 .485 (±.024) .519 (±.019) .467 (±.126) .479 (±.115)
FM2 .485 (±.024) .518 (±.014) .467 (±.123) .481 (±.117)
FM3 .482 (±.022) .519 (±.021) .431 (±.090) .470 (±.098)
FM4 .486 (±.022) .519 (±.018) .477 (±.111) .500 (±.092)
baseline 1/3 = .333 .419 (±.087)

Table 4: Performance of the task solvers in the easier prediction task (with well-defined
categories). Performance increases consistently as in the difficult prediction task when
mirroring the vocabulary (FM4). A separate vocabulary (FM3) decreases performance,
a single retirment feature (FM2) does not change performance at all.

itself as a strong competitor for the machine learners. Statistical learning is, however, in
almost all cases better than this ontological baseline.

3.2 Feature weight analysis

We identified lemmas whose feature weights are substantially different in retirement
disclosures than in non-retirements (which can be seen from FM3), or which obtain a
relatively high “adjustment” weight in the mirrored retirement vocabulary (in the best-
performing feature set FM4). Table 5 shows such lemmas based on feature weights for
the category positive. Results for category negative are omitted since they show similar
patterns.

For example, the lemmas exceed (1.293 for category positive in FM1) and improve-
ment (0.708 in FM1) are generally associated with a positive CAR response. However,
FM4 reduces these weights in retirement disclosures by �0.019 for exceed and �0.014
for improvement, showing that they imply a different outcome for this event type (see

59



section 2.4 for an explanation of weight adjustments).15 The relatively small adjustement
is probably due to the low overall proportion of retirements, and the effect becomes much
clearer with a separate vocabulary in FM3: the feature weights on retirement disclosures
are �0.021 (exceed) and �0.018 (improvement), respectively, showing that these lemmas
no longer indicate a positive stock market reaction. Similarly, the lemma insolvency is
generally associated with a negative reaction, but indicates a positive response when used
in retirement disclosures.

FM1 FM3 FM4
lemma non-ret. ret. non-ret. ret.
exceed 1.293 1.293 -0.021 1.293 -0.019
fall -0.864 -0.842 -0.034 -0.855 -0.027
career 0.090 -0.033 0.115 0.044 0.089
improvement 0.708 0.696 -0.018 0.700 -0.014
rise 0.612 0.616 -0.024 0.614 -0.023
weak -0.769 -0.766 -0.012 -0.769 -0.009
lower -1.022 -1.012 -0.041 -1.018 -0.028
positive 1.149 1.130 -0.007 1.137 -0.015
insolvency -0.386 -0.447 0.081 -0.417 0.059

Table 5: Lemmas whose feature weights for category positive are substantially different
in retirement disclosures (additional feature weights in FM3 and FM4) from their overall
feature weights (FM1).

4 Conclusion

Machine learners are used in many prediction tasks of computational linguistics. We have
combined a semantics-based approach to recognition of message content with a machine-
learning classification of documents, specifically of corporate disclosures according to
their effect on the stock price.

Machine learners benefit from ontological information since they can thus deal with
a more specific realm of language use. The core idea tested in our feasibility study is
that words are used more consistently within the specific domain of retirement disclo-
sures. The effect on prediction accuracy is small, yet consistent. Testing for statistical
significance by use of a McNemar test shows that some of the improvements are indeed
significant.

Future work will be aimed partly at refining the ontological approach to improve its
precision and recall (both already above 90% on the main target feature, retirements, but

15FM2 is omitted here because its lemma feature weights are almost identical to FM1. Recall that
FM2 just adds a single feature indicating retirement disclosures (with a correct indication of category
negative), so it cannot account for the di" erences in language use between retirements and other messages
that we are interested in here.
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not achieving comparable performance for more fine-grained information such as detect-
ing the position that the retiree steps down from). On the other hand, the results of our
study make it seem likely that broadening the ontological model to recognize additional
features (e.g. patents granted, loans taken up) will further improve the prediction accu-
racy for the eventual target, the effect of a disclosure on the stock price. Last but not
least, we will strive to develop new methods for exploiting the subjective use of language
in different domains in order to improve prediction accuracy.
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