Rethinking Corpus Frequencies

Stefan Evert
stefan.evert@uos.de | purl.org/stefan.evert
Institute of Cognitive Science
University of Osnabrück

How often is *kick the bucket* really used?

What are the characteristics of “translationese”?

Do Americans use more split infinitives than Britons? What about British teenagers?

What are the typical collocates of *cat*?

Can the next word in a sentence be predicted?

Do native speakers prefer constructions that are grammatical according to some linguistic theory?

Evidence from frequency comparisons / estimates

A toy research question

How many passives are there in English?

☞ Slightly more interesting version:

Is the passive used more often in British English than in American English?

Standard methodology
(e.g. McEnery & Wilson 2001, Sec. 3.4)

- Obtain representative corpora of AmE and BrE
- Count passives in both corpora
 - AmE: 54 passives | BrE: 50 passives
 - contrary to implicit expectation of research question
- Different sample sizes ☞ use relative frequency
 - unit of measurement? — here: sentences (simple)
 - AmE: 54 passives out of 300 sentences = 18%
 - BrE: 50 passives out of 200 sentences = 25%
Standard methodology
(e.g. McEnery & Wilson 2001, Sec. 3.4)

- Must test significance to make sure observed differences are not just a coincidence
 - main cause: “random” choice of corpus material
- Standard tests for frequency comparison based on contingency table = cross-classification
 - null hypothesis H_0: same proportion of passives

<table>
<thead>
<tr>
<th></th>
<th>AmE</th>
<th>BrE</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive</td>
<td>k_1</td>
<td>k_2</td>
</tr>
<tr>
<td>active</td>
<td>n_1-k_1</td>
<td>n_2-k_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AmE</th>
<th>BrE</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>active</td>
<td>246</td>
<td>150</td>
</tr>
</tbody>
</table>

Standard methodology
(e.g. McEnery & Wilson 2001, Sec. 3.4)

- Traditional: Pearson’s chi-squared test
 - test statistic: $X^2 = 3.1571$, df = 1
 - p-value has meaningful interpretation: $p = 0.0756$
- Recommended: Fisher’s exact test
 - better accuracy & robustness than chi-squared test
 - similar p-value here: $p = 0.0717$
- Observed difference is not significant
 - customary “significance level”: $p < .05$
 - more conservative levels are $p < .01$ and $p < .001$

What does “not significant” mean?
- either: there is no difference between AmE and BrE
- or: selected corpora did not provide enough evidence

Significance vs. effect size
- if the “true” difference between AmE and BrE is small, it is more difficult to detect with sufficient confidence

Possible solution: use larger corpora
- larger sample size increases “power” of tests
- even small effects become significant

Criticism

- Recent criticism of significance testing:

Fundamental problem:
all significance tests assume random samples
- even a “representative” or “balanced” corpus is not a perfectly random sample of language
Goals for today

- The logic of statistical hypothesis testing
 - illustrated by the library metaphor
- Why a corpus isn’t a random sample
- Measuring non-randomness
- Consequences for significance tests
- Rethinking corpus frequencies

Back to our toy problem

How many passives are there in English?

- American English style guide claims that “In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice.”
- This Web page actually states that only 10% of English sentences are in passive voice (as of January 2009)!
- We have doubts and want to verify this claim
The library metaphor
first seen at ICAME 25 (2004)

♦ Extensional definition of a language:
“All utterances made by speakers of the language under appropriate conditions, plus all utterances they could have made”

♦ Imagine a huge library that contains anything that has ever been written or said in the language → library metaphor (Evert 2006)

• necessarily a hypothetical library. The ICAME 30 Conference was awful and boring, is part of the English language, even though no-one has an occasion to say it!

The library metaphor

♦ Random sampling in the library metaphor (for a random sample of sentences = tokens)
 • walk to a random shelf ...
 ... select a random book ...
 ... open it on a random page ...
 ... and pick a random sentence from the page
 → 1 item for our sample
 • Repeat \(n \) times for sample size \(n \)

From research question to statistical analysis

random sample \(\xrightarrow{\text{statistical inference}} \) population (library)

linguistic hypothesis \(\xleftarrow{\text{problem operationalisation}} \) hypothesis

Statistics

Inference from random sample

♦ Take a sample of, say, 100 sentences
 • we observe \(k = 19 \) passives
 • if style guide is right, we expect \(k_0 = 15 \) passives
 • \(k > k_0 \) → reject claim of style guide?

♦ Principle of statistical inference
 • if sample is picked at random, sample frequency \(k \) should roughly be equal to expected frequency \(k_0 \)

♦ Take another sample, just to be sure
 • observe \(k = 13 \) passives
 • \(k < k_0 \) → claim of style guide confirmed?
Sampling variation

- Random sampling ensures that, on average, relative frequency equals population proportion.
- But for every individual sample we will get a different value because of chance effects → sampling variation.
- The main purpose of statistical methods is to estimate & correct for sampling variation.
 - that’s all there is to statistics, really 😊

Quantifying sampling variation

- Many corpus linguists set out to test H_0.
 - each one draws a random sample of size $n = 100$.
 - assume H_0 to be true → rejection is a mistake!
 - how many of the samples have the expected number $k = 15$ of passives, how many have $k = 19$, etc.?
- We don’t need an infinite number of monkeys (or corpus linguists) to answer these questions.
 - randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn.
- Described by binomial distribution

The binomial distribution

$$Pr(k) = \left({n \atop k} \right) (\pi_0)^k (1 - \pi_0)^{n-k}$$

percentage of samples = probability

Binomial sampling distribution

- risk of false rejection = p-value = 26.2%
Why a corpus isn’t a random sample

Corpora

- Theoretical sampling procedure is impractical
 - it would be very tedious if you had to take a random sample from a library, especially a hypothetical one, every time you want to test some hypothesis
- Use pre-compiled sample: a corpus
 - Brown: 500 text fragments @ 2,000 words
 - total size = 1 million running words
 - BNC: 4,048 documents ranging from 25 to 428,300 words
 - total size = 100 million running words

The key problem

- unit of sampling (text or text fragment)
 ≠ unit of measurement (e.g. sentence)
 - recall sampling procedure in the library metaphor ...
Unit of sampling

- Random sampling in the library metaphor
 - walk to a random shelf ...
 - ... select a random book ...
 - ... open it on a random page ...
 - ... and pick a random sentence from the page
 - repeat n times for sample size n.
- Corpus = random sample of books, not sentences!
 - we should only use 1 sentence from each book
 - sample size: $n=500$ (Brown) or $n=4048$ (BNC).

Pooling data

- Books aren’t random samples themselves
 - each book contains relatively homogeneous material
 - but much larger differences between books
- Therefore, the pooled data do not form a random sample from the library
 - for each randomly selected sentence, we co-select a substantial amount of very similar material
- Consequence: sampling variation increased

Pooling data

- In order to obtain larger samples, researchers usually pool all data from a corpus
 - i.e. they include all sentences from each book
- Do you see why this is wrong?

Pooling data

- Let us illustrate this with a simple example ...
 - assume library with two sections of equal size
 - e.g. spoken and written language in a corpus
 - population proportions are 10% vs. 40%
 - overall proportion of $\pi = 25\%$ in the library
 - this is the null hypothesis H_0 that we will be testing
- Compare sampling variation for
 - random sample of 100 tokens from the library
 - two randomly selected books of 50 tokens each
 - book is assumed to be a random sample from its section
A sample of random samples is a random sample

- Larger unit of sampling is not the original cause of non-randomness
 - if each text in a corpus is a genuinely random sample from the same population, then the pooled data also form a random sample
 - we can illustrate this with a thought experiment

Measuring non-randomness

The random library

- Suppose there’s a vandal in the library
 - who cuts up all books into single sentences and leaves them in a big heap on the floor
 - the next morning, the librarian takes a handful of sentences from the heap, fills them into a book-sized box, and puts the box on one of the shelves
 - repeat until the heap of sentences is gone

 library of random samples

- Pooled data from 2 (or more) boxes form a perfectly random sample of sentences from the original library
A sample of random samples is a random sample

- The true cause of non-randomness
 - discrepancy between unit of sampling and unit of measurement only leads to non-randomness if the sampling units (i.e. the corpus texts) are not random samples themselves (from same population)
- No we know how to measure non-randomness
 - find out if corpus texts are random samples
 - i.e., if they follow a binomial sampling distribution
 - tabulate observed frequencies across corpus texts

Measuring non-randomness

- Tabulate number of texts with \(k \) passives
 - illustrated for subsets of Brown/LOB (310 texts each)
 - meaningful because all texts have the same length
- Compare with binomial distribution
 - for population proportion \(H_0 : \pi = 21.1\% \) (Brown) and \(\pi = 22.2\% \) (LOB); approx. \(n = 100 \) sentences per text
 - estimated from full corpus \(\Rightarrow \) best possible fit
- Non-randomness \(\Rightarrow \) larger sampling variation

Passives in the Brown corpus

Passives in the LOB corpus
Consequences of non-randomness

- Accept that corpus is a **sample of texts**
 - data cannot be pooled into random sample of tokens
 - results in much smaller sample size ...
 (BNC: 4,048 texts rather than 6,023,627 sentences)
 - ... but more informative measurements (relative frequencies on interval rather than nominal scale)

- Use statistical techniques that account for the **overdispersion** of relative frequencies
 - Gaussian distribution allows us to estimate **spread** (variance) independently from **location**
 - Standard technique: **Student’s t-test**

A case study: Passives in AmE and BrE

- Are there more passives in BrE than in AmE?
 - based on data from subsets of Brown and LOB
 - 9 categories: press reports, editorials, skills & hobbies, misc., learned, fiction, science fiction, adventure, romance
 - ca. 310 texts / 31,000 sentences / 720,000 words each

- Pooled data (random sample of sentences)
 - AmE: 6584 out of 31,173 sentences = 21.1%
 - BrE: 7091 out of 31,887 sentences = 22.2%

- Chi-squared test (→ pooled data, binomial) vs. t-test (→ sample of texts, Gaussian)
A case study: Passives in AmE and BrE

- Chi-squared test: **highly significant**
 - p-value: \(.00069 < .001 \)
 - confidence interval for difference: \(0.5\% - 1.8\% \)
 - large sample \(\rightarrow \) large amount of evidence

- **t-test: not significant**
 - p-value: \(.1340 > .05 \) \((t=1.50, \text{df}=619.96) \)
 - confidence interval for difference: \(-0.6\% - +4.9\% \)
 - \(H_0 \): same average relative frequency in AmE and BrE

What are we really testing?

- **Are population proportions meaningful?**
 - corpus should be **balanced** and **representative** (broad coverage of genres, ... in appropriate proportions)
 - average frequency depends on composition of corpus
 - e.g. 18% passives in written BrE / 4% in spoken BrE

- **How many passives are there in English?**
 - 50% written / 50% spoken: \(\pi = 13.0\% \)
 - 90% written / 10% spoken: \(\pi = 16.6\% \)
 - 20% written / 80% spoken: \(\pi = 6.8\% \)

Average relative frequency?
Average relative frequency?

Problems of the statistical analysis of corpus data

Studying variation in language

- It seems absurd now to measure & compare relative frequencies in “language” (= library)
 - proportion \(\pi \) depends more on composition of library than on properties of the language itself

- Quantitative corpus analysis has to account for the variation of relative frequencies between individual texts (cf. Gries 2006)
 - research question \(\rightarrow \) one factor behind this variation

Rethinking corpus frequencies
Studying variation in language

- **Approach 1**: restrict study to sublanguage in order to eliminate non-randomness
 - data from this sublanguage (= single section in library) can be pooled into large random sample
- **Approach 2**: goal of quantitative corpus analysis is to explain variation between texts in terms of
 - random sampling (of tokens within text)
 - stylistic variation: genre, author, domain, register, ...
 - subject matter of text → term clustering effects
 - differences between language varieties

explaining variation

- Statisticians explain variation with the help of **linear models** (and other statistical models)
 - linear models predict response (“dependent variable”) from one or more factors (“independent variables”)
 - simplest model: linear combination of factors
- Linear model for passives in AmE and BrE:

\[p_i = \beta_0 + \beta_1 \text{genre} + \beta_2 \text{AmE/BrE} + \epsilon_i \]
Linear model for passives

- Goodness-of-fit (analysis of variance)
 - total variance (sum of squares): 189,861
 - explained by genre***: 112,113 (59.0%)
 - explained by AmE/BrE*: 687 (0.4%)
 - unexplained (residuals): 77,061 (40.6%)

- Is variance explained well enough?
 - binomial sampling variation: ca. 10,200 (5.4%)

- F-tests show significant effects of genre (p < 10^-15) and AmE / BrE (p = .0198)

- 95% confidence intervals for effect sizes:
 - AmE / BrE: 0.3% ... 3.8%
 - genre = learned: 13.4% ... 19.3%
 - compared to “press reportage” genre as baseline
 - genre = romance: -20.8% ... -13.4%
 - genre = ...
Don’t try this at home, kids!

Generalised linear models

- **Generalised linear models (GLM)**
 - account for binomial sampling variation of observed frequencies and different sample sizes
 - allow non-linear relationship between explanatory factors and predicted relative frequency (π_i)

\[
f_i \sim B(n_i, \pi_i) \quad \text{binomial sampling ("family")}
\]

\[
\pi_i = \frac{1}{1 + e^{-\theta_i}} \quad \text{"link" function}
\]

\[
\theta_i = \beta_0 + \beta_1 (\text{genre}) + \beta_2 (\text{AmE/BrE})
\]

Why linear models are not appropriate for frequency data

- Binomial sampling variation not accounted for
- Normality assumption (error terms)
 - Gaussian approximation inaccurate for low-frequency data (with non-zero probability for negative counts!)
- Homoscedasticity (equal variances of errors)
 - variance of binomial sampling variation depends on population proportion and sample size
 - different sample sizes (texts in Brown/LOB: 40 – 250 sentences; huge differences in BNC)
- Predictions not restricted to range 0% – 100%

GLM for passives

- Goodness-of-fit (analysis of deviance)
 - total deviance ("unlikelihood"): 13,265
 - explained by genre**: 8,275 (= 62.4%)
 - explained by AmE/BrE**: 36 (= 0.3%)
 - unexplained (residual deviance): 4,953 (= 37.3%)
 - binomial sampling variation: \(\approx 1,000\) (= 7.5%)
- Interpretation of confidence intervals difficult
Model diagnostics

Linear Model

Generalised Linear Model

Still no satisfactory explanation for observed variation in frequency of passives between texts!

Take-home messages

- Don’t trust statistic(ian)s blindly
 - You know how complex language really is!
 - linguists and statisticians should work together
- No excuse to avoid significance testing
 - good reasons to believe that binomial sampling distribution is a lower bound on variation in language
- Needed: large corpora with rich metadata
 - study & “explain” variation with statistical models
 - full data need to be available (not Web interfaces!)

References (1)

References (2)

References (3)