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Abstract
This paper describes a population model for word frequency distributions based on the Zipf-Mandelbrot law,

corresponding to the word frequency distribution induced by a random character sequence. The model, which

has convenient analytical and numerical properties, is shown to be adequate for the description of language data

extracted by automatic means from large text corpora. It can thus be used to study the problems faced by the

statistical analysis of such data in the field of natural-language processing.
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1 Introduction to lexical statistics and LNRE models

Most work in the area of lexical statistics is based on random sampling with replacement.1 This
model assumes a population of types w1, · · · , wS with occurrence probabilities π1, · · · , πS . S
is called the population size and may be infinite (S = ∞) in the case of a countably infinite
population. The probabilities πi are the parameters of this model and must satisfiy

π1 + · · · + πS = 1. (1)

It is convenient to assume that they are arranged in descending order, i.e. π1 ≥ π2 ≥ · · · ≥
πS . The random selection of a token from this population is described by a random variable
X : Ω → {1, . . . , S}.2 A value of X = k implies that the selected token is of type wk, and the
distribution of X is given by P

(
X = k

)
= πk for k ∈ {1, . . . , S}. A random sample of size N

corresponds to the N -fold independent repetition of this experiment, i.e. to independent random
variables X = (X1, . . . , XN) with distributions identical to that of X .

In lexical statistics, a text sample of N tokens (which may be anything ranging from ortho-
graphic words, over words belonging to a specific morphological category, to word pairs rep-
resenting cooccurrences) is interpreted as such a random sample X. In this view, two major
goals of the statistical analysis are: (i) Draw inferences about the population parameters from
the observed data, which are then interpreted in light of the research question. An example is
the estimation of the population size S, which may correspond to the number of different word
types that a particular word-formation process can generate (e.g. Baayen, 2001, Sec. 6.2) or
to the size of an author’s vocabulary (e.g. McNeil, 1973). (ii) Given the estimated population
parameters (or, more generally, assumptions about these parameters), predict the behaviour of
various observable quantities. Such quantities correspond to random variables in the random

1For all the concepts and results introduced in this section, see (Baayen, 2001). The notation has been adopted from the same source with minor changes.
2When S = ∞, {1, . . . , S} stands for the set N of all natural numbers.
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sample model, for which expectations and variances can be computed. A typical example is the
prediction of vocabulary growth curves, which measure the increase in the number of observed
types when the sample size N is increased (see Baayen, 2001).

Since the random variables (X1, . . . , XN) are jointly independent, the sequential ordering of
the tokens in the sample X provides no information about the population parameters.3 It is
therefore sufficient to consider the type frequencies fi for i ∈ {1, . . . , S} (in the mathematical
terminology, f = (f1, . . . , fS) is a sufficient statistic for the random sample X). The frequency
fi is the number of tokens in the sample X belonging to type wi, or formally

fi :=
N∑

k=1

I[Xk=i], (2)

where

I[Xk=i] :=

{

1 Xk = i

0 otherwise
(3)

is the general notation for indicator variables (= random variables with range {0, 1}). Each fi

is a binomially distributed random variable with success probability πi, i.e.

P
(
fi = k

)
=

(
N

k

)

(πi)
k(1 − πi)

N−k (4)

for k ∈ {1, . . . , N}. It has to be kept in mind, though, that the fi are not mutually independent.
The mathematical analysis is considerably simplified when conditioning on a fixed sample size
N is avoided, i.e. one assumes that the sample size is itself a Poisson-distributed random vari-
able with mean N . The type frequencies then become independent Poisson-distributed random
variables with

P
(
fi = k

)
= e−Nπi

(Nπi)
k

k!
. (5)

This approach (henceforth called independent Poisson sampling) is quite natural when studying
the number of different species in biological samples, where the total number of specimens in
the sample is obviously subject to random variation and cannot be fixed in advance.4 Inde-
pendent Poisson sampling can also be applied in lexical statistics, especially for large N . For
instance, the unconstrained sample size with mean N = 1 000 000 has a standard deviation of
σ =

√
N = 1 000; therefore, the observed sample size will almost certainly deviate from N by

less than 1%.5 In the following, I will always assume independent Poisson sampling, as does
Baayen (2001). The expectation of fi is then E

[
fi

]
= Nπi, and its variance is VAR

[
fi

]
= Nπi.

Since it is usually not known which one of the observed types is the i-th population type wi,
the set of observed frequencies cannot be matched directly against the random variables fi. It is
common practice to arrange the observed frequency values in descending order f ∗

1 ≥ f ∗
2 ≥ . . . ,

which is called a Zipf ranking. Although π1 is the highest type probability, and E
[
f1

]
the

3This ordering can be used to test the adequacy of the random sample model, though, e.g. with the dispersion test described in (Baayen, 2001, Sec. 5.1).
4A good deal of the work on word frequency distributions originates in this area, e.g. Good (1953), Holgate (1969), Engen (1974).
5The same argument shows that great care has to be taken when Equation (5) is applied to small samples. For N = 1 000, the standard deviation is σ =

√
1 000 ≈ 31.62 and

deviations as far as 10% from the mean N have to be expected.

JADT 2004 : 7es Journées internationales d’Analyse statistique des Données Textuelles



A SIMPLE LNRE MODEL FOR RANDOM CHARACTER SEQUENCES 3

highest expectation, w1 need not be the most frequent observed type corresponding to f ∗
1 , and

the same holds for all f ∗
i . A better approach is to look at other summary statistics that can be

directly observed without an exact knowledge of the population types.

In order to do so, collect all types wi with the same frequency fi = m into the frequency class
m. The class size Vm, i.e. the number of different types in the frequency class m, can be easily
determined from the observed sample. In the random sample model, it is given by the random
variable

Vm :=
S∑

i=1

I[fi=m]. (6)

The sequence of all class sizes (V1, V2, . . . ) is called the frequency spectrum. Note that all but
finitely many of the Vm equal zero (in particular, the largest non-empty frequency class is Vf∗

1
).

Using the same definition, V0 is the number of unobserved types, which cannot be determined
from the sample. The vocabulary size V is the total number of types observed in the sample:

V :=

S∑

i=1

I[fi>0]. (7)

The frequency spectrum is related to V and N through the identities V =
∑∞

m=1 Vm and N =
∑∞

m=1 mVm. The expectations of V and Vm can easily be computed from (5):

E
[
Vm

]
=

S∑

i=1

e−Nπi
(Nπi)

m

m!
and E

[
V

]
=

S∑

i=1

(
1 − e−Nπi

)
, (8)

but it is more difficult to obtain variances and the exact distributions (see Baayen, 2001).

As noted before, it is impossible to estimate the large number of probability parameters directly
from a sample. It is therefore necessary to formulate a population model with a small number
of parameters: once these have been estimated, the hypothesised distribution of the probability
parameters πi can be computed. Following Baayen (2001), I use the term LNRE model for such
a population model.6 While it is in principle possible to formulate an LNRE model directly for
the type probability parameters (e.g. Holgate, 1969), it is usually more convenient to use the
structural type distribution, which is a step function given by

G(ρ) :=
∣
∣{i ∈ {1, . . . , S} |πi ≥ ρ}

∣
∣. (9)

E
[
Vm

]
and E

[
V

]
can then be expressed in terms of Stieltjes integrals

E
[
Vm

]
=

∫ ∞

0

(Nπ)m

m!
e−Nπ dG(π), E

[
V

]
=

∫ ∞

0

(1 − e−Nπ) dG(π) (10)

(Baayen, 2001, 47f). Most LNRE models approximate G(ρ) by a continuous function with type
density function g(π), i.e.

G(ρ) =

∫ ∞

ρ

g(π) dπ. (11)

6LNRE stands for Large Number of Rare Events, a term introduced by Khmaladze (1987). It refers to the very large number of types with low occurrence probabilities that are characteristic
of word frequency distributions and the associated population models.
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Note the use of +∞ as an upper integration limit although all type probabilities must fall into
the range 0 ≤ π ≤ 1. This device allows for more elegant mathematical formulations, but care
has to be taken that G(1) � 1 (otherwise the LNRE model would predict the existence of types
with π > 1). For an LNRE model based on a type density function g(π), the expectations of
Vm and V become

E
[
Vm

]
=

∫ ∞

0

(Nπ)m

m!
e−Nπg(π) dπ, E

[
V

]
=

∫ ∞

0

(1 − e−Nπ)g(π) dπ. (12)

Equation (1) leads to the normalisation condition
∫ ∞

0

π · g(π) dπ = 1, (13)

and the population size is given by S =
∫ ∞

0
g(π) dπ.

2 Random character sequences and the Zipf-Mandelbrot law

Zipf’s law (Zipf, 1949), which states that the frequency of the r-th most frequent type is
proportional to 1/r, was originally formulated for the Zipf ranking of observed frequencies
(f ∗

r ≈ Cr−1) and (more or less equivalently) for the observed frequency spectrum (Vm ≈
C/m(m + 1)). In its first form, Zipf’s law describes a fascinating property of the higher-
frequency words in a language, for which explanations related to Zipf’s principle of least effort
have been put forward (e.g. Mandelbrot, 1962; Powers, 1998). In its second form, it is a state-
ment about the enormous abundance of lowest-frequency types, which has many consequences
for the statistical analysis and for applications in natural-language processing.

It has long been known that the word frequency distributions obtained from random text are
strikingly similar to Zipf’s law (Li, 1992; Miller, 1957). Formally, random text is understood
as a character sequence generated by a Markov process, with word boundaries indicated by
a special “space” character. Rouault (1978) shows that, under very general conditions, this
segmented character sequence is equivalent to a random sample of words (with replacement,
corresponding to the model introduced in Section 1) and that the population probabilities of
low-frequency types asymptotically satisfy the Zipf-Mandelbrot law

πi =
C

(i + b)a
(14)

with parameters a > 1 and b > 0 (Baayen, 2001, 101ff). In Sections 3 and 4, I will formulate
LNRE models for random character sequences based on the Zipf-Mandelbrot law. Although
Baayen remarks that “for Zipf’s harmonic spectrum law and related models, no complete ex-
pression for the structural type distribution is available” (Baayen, 2001, 94), this need not dis-
courage us: (14) refers to the population parameters rather than to the observed Zipf ranking.
The Zipf-Mandelbrot law for random text is a population model, while the original formulation
of Zipf’s law and its variants (Baayen, 2001, 94f) have a purely descriptive nature.

These considerations open up an entirely new perspective on Zipf’s law: If an LNRE model
based on (14) can be shown to agree with the observed data, we must conclude that – as far as
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statistical analysis is concerned – such language data is not substantially different from random
text. As a consequence, the statistical analysis faces all the problems of making sense from
random noise, and these problems can be predicted with the LNRE models of Sections 3 and 4.

One of the characteristics of random text is an infinite population size, since there can be words
of arbitrary length, leading to an extremely skewed LNRE distribution. It has often been noted
that this does not accord well with real-world data, especially when there are narrow restric-
tions and the data have been cleaned up manually. Examples are studies of (morphological)
productivity (e.g. Baayen and Renouf, 1996) or the word frequency distributions of small lit-
erary texts (see Baayen, 2001). However, the situation is different when one considers “raw”
data obtained from a large corpus of hundreds of millions of words, which is the input that
statistical methods in natural-language processing typically have to deal with. The similarity to
random text becomes even more striking for combinations of two or more words (cf. Baayen,
2001, 221). Most techniques for the extraction of collocations from text corpora apply statis-
tical independence tests to such base material (e.g. Evert and Krenn, 2001), and are thus also
affected by the consequences of the Zipf-Mandelbrot law. Ha et al. (2002) demonstrate such an
effect for Mandarin Chinese ideographs: while the number of different graphs is comparatively
small and does not exhibit an LNRE distribution, the situation changes when sequences of two
or more such graphs are examined. The longer the sequences, the more closely their frequency
distribution agrees with the Zipf-Mandelbrot law.

3 The Zipf-Mandelbrot (ZM) LNRE model

In order to derive a useful LNRE model from the Zipf-Mandelbrot law, it is necessary to re-
formulate (14) in terms of a type density function g(π). The structural type distribution corre-
sponding to the Zipf-Mandelbrot law is a step function with G(πi) = i (since there are exactly
i types with π ≥ πi, namely w1, . . . , wi). Solving (14) for i, we obtain

G(π) =
C1/a

π1/a
− b (15)

for π = πi, and G(π) is constant between these steps. Differentiation of (15) suggests a type
density of the form

g(π) :=

{

C · π−α−1 0 ≤ π ≤ B

0 otherwise
(16)

with two free parameters 0 < α < 1 and B > 0.7 The normalising constant C can be deter-
mined from (13):

1 =

∫ B

0

πg(π) dπ =

∫ B

0

Cπ−α dπ = C ·
[

π1−α

1 − α

]B

0

= C · B1−α

1 − α
(17)

which evaluates to

C =
1 − α

B1−α
. (18)

7The constraints on the parameter α follow from 0 < 1/a < 1. C is a normalising constant and will be determined from (13). The upper cutoff point B is necessary since the model
would predict types with probability π > 1 otherwise. B should roughly correspond to the probability π1 of the most frequent type.
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The ZM model describes an infinite population, since S =
∫ B

0
g(π) dπ = ∞, and its structural

type distribution

G(ρ) =

∫ B

ρ

g(π) dπ = C ·
∫ B

ρ

π−α−1 dπ = C ·
[
π−α

−α

]B

ρ

=
C · ρ−α

α
− C · B−α

α
=

C/α

ρα
− 1 − α

B · α

is identical to (15) with a = α−1 and b = (1− α)B−1α−1 for any values of ρ where G(ρ) ∈ N.
Thus, (16) can indeed be understood as a continuous extension of the Zipf-Mandelbrot law.

E
[
Vm

]
=

∫ ∞

0

(Nπ)m

m!
e−Nπg(π) dπ =

C

m!

∫ B

0

(Nπ)me−Nππ−α−1 dπ

=
C

m!

∫ NB

0

tme−t

(
t

N

)−α−1
1

N
dt =

C

m!
Nα

∫ NB

0

tm−α−1e−t dt

≈ C

m!
Nα

∫ ∞

0

tm−α−1e−t dt

In the second line, the substitution t := Nπ has been made. The approximation in the last line is
justified for NB � m (which should always be the case for the large samples that are of interest
here) where the integral

∫ ∞

NB
tm−α−1e−t dt is vanishingly small. Thus, E

[
Vm

]
is reduced to the

gamma integral
∫ ∞

0
tm−α−1e−t dt = Γ(m−α) (Weisstein, 1999, s.v. Gamma Function) and we

obtain the concise expression

E
[
Vm

]
=

C

m!
· Nα · Γ(m − α). (19)

The computation of E
[
V

]
involves an improper integral solved by partial integration:

E
[
V

]
=

∫ ∞

0

(1 − e−Nπ)g(π) dπ ≈ CNα

∫ ∞

0

(1 − e−t)t−α−1 dt

= CNα · lim
A ↓ 0

(∫ ∞

A

t−α−1 dt −
∫ ∞

A

e−tt−α−1 dt

)

= CNα · lim
A ↓ 0

([
t−α

−α

]∞

A

−
[

e−t t
−α

−α

]∞

A

−
∫ ∞

A

e−t t
−α

−α
dt

)

= CNα · lim
A ↓ 0

(
(
1 − e−A

)
· A−α

α
︸ ︷︷ ︸

= O(A1−α)→ 0

+
Γ(1 − α, A)

α
︸ ︷︷ ︸

→Γ(1−α)/α

)

where
∫ ∞

A
e−tt−α dt = Γ(1 − α, A) is the upper incomplete gamma function (Weisstein, 1999,

s.v. Incomplete Gamma Function). This leads to

E
[
V

]
= C · Nα · Γ(1 − α)

α
. (20)
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Consequences of (19) and (20) are the recurrence relation

E
[
Vm+1

]

E
[
Vm

] =
Γ(m + 1 − α)

(m + 1)!
· m!

Γ(m − α)
=

m − α

m + 1
, (21)

a relative frequency spectrum

E
[
Vm

]

E
[
V

] =
α · Γ(m − α)

Γ(m + 1) · Γ(1 − α)
(22)

which is independent of the sample size N (cf. Baayen, 2001, 118), and a power law

E
[
V (N)

]
= C ′ · Nα with 0 < α < 1 (23)

for the vocabulary growth curve. Equation (23) is known as Herdan’s law (Herdan, 1964) in
quantitative linguistics and as Heaps’ law (Heaps, 1978) in information retrieval.

The appeal of the ZM model lies in its mathematical elegance and numerical efficiency. Com-
putation of the expected frequency spectrum and similar statistics is fast and accurate, using
implementations of the complete and incomplete gamma function that are provided by many
scientific libraries. Moreover, due to the simple form of g(π) many other important integrals
such as

E
[
Vm,ρ

]
=

∫ ρ

0

(Nπ)m

m!
e−Nπg(π) dπ (24)

for 0 < ρ < B have closed-form solutions and can be studied analytically.

4 The finite Zipf-Mandelbrot (fZM) LNRE model

Although the ZM model is theoretically well-founded as a model for random character se-
quences, its assumption of an infinite vocabulary is unrealistic for natural-language data. In
order to achieve a better approximation of such frequency distributions, the finite ZM model
introduces an additional lower cutoff point A > 0 for the type density:

g(π) :=

{

C · π−α−1 A ≤ π ≤ B

0 otherwise
, (25)

which implies that there are no types with probability π < A in the population. The normalising
constant C is determined from (13) as

C =
1 − α

B1−α − A1−α
, (26)

and the population size is

S =
C

α
· (A−α − B−α) =

1 − α

α
· A−α − B−α

A1−α − B1−α
. (27)
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Again, the structural type density G(ρ) is identical to (15), with G(ρ) = S for ρ ≤ A. The
expectations of Vm and V are calculated to be

E
[
Vm

]
=

C

m!
· Nα · Γ(m − α, NA), (28)

E
[
V

]
= C · Nα · Γ(1 − α, NA)

α
+

C

α · Aα

(
1 − e−NA

)
. (29)

There are no simple expressions for the recurrence relation (21) and the relative frequency
spectrum (22). Although much of the mathematical elegance of the ZM model has been lost,
the fZM model is still numerically efficient, and many integrals like (24) have closed-form
expressions involving incomplete gamma functions.

5 Some other (related) LNRE models

Rouault (1978) has studied the properties of random character processes and shown that their
observed relative frequency spectrum Vm/V converges to the expression (22) predicted by the
ZM model for N → ∞. This result provides theoretical support for its use as a model of large
samples of random (or nearly random) text.

In the literature on lexical statistics, models for word frequency distributions are often based
on a power law similar to (16). Sometimes, a decay factor e−λπ is used instead of the arbitrary
cutoff point B. Such a model is introduced by Good (1953, 248) as a “Pearson Type III”
distribution for α < 0, and generalised to the range 0 < α < 1 by Engen (1974). Multiplication
with a second decay factor e−µ/π instead of the lower cutoff point A of the fZM model leads to
Equation (50) of Good (1953, 249). Good refers to it as a mixture “between Pearson’s Types
III and V” and remarks that it is “analytically unwieldy”. Sichel (1971, 1975) works out this
model under the name Generalized Inverse Gauß-Poisson (GIGP), using the type density

g(π) =
(2/bc)γ+1

2Kγ+1(b)
πγ−1e−

π
c
− b2c

4π (30)

with parameters b, c, and γ (Baayen, 2001, Sec. 3.2.2). Carroll (1967) and Holgate (1969) as-
sume a log-normal distribution for the population frequencies of words or species in a biological
sample, citing Preston (1948) for a theoretical motivation. The resulting type density is

g(π) =
1

σ
√

2π

1

π2
e−

1

2σ2
(log π−µ)2 (31)

with parameters µ and σ (Baayen, 2001, Sec. 3.2.1).8 Baayen (2001, Sec. 3.2.3) presents several
other models based on variants of Zipf’s law for the expected frequency spectrum at a certain
Zipf sample size Z (see also Good, 1953, 249). Although the expectations of Vm and V can
be computed for arbitrary sample sizes N using extrapolation techniques, none of these models
can be reformulated as a population model (Baayen, 2001, 94). Implementations of the GIGP,
log-normal, and several of the Zipf models are available in the lexstats package distributed
with (Baayen, 2001). Of the various Zipf models, the Yule-Simon model (Simon, 1960) is found
to be useful and numerically manageable.

8The constant π is printed in bold font to distinguish it from the type probability π.
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6 Empirical data

In order to see how well the ZM and fZM models describe real-world data, they have been
applied to nouns and adjective-noun cooccurrences extracted from the 100-million word British
National Corpus (BNC) and a 225-million word corpus of German newspaper text from the
1990’s (HGC). The following four data sets were used. BNC-N: 19 million instances of nouns
extracted from the BNC corpus, and filtered with regular expressions to weed out non-words
(N = 19 × 106, V = 217 527). HGC-N: 48 million instances of nouns extracted from the HGC
corpus, and checked with a morphological analyser (Lezius et al., 2000) (N = 48 × 106, V =
1 556 203). BNC-AN: 4 million instances of adjacent adjective-noun pairs from the BNC corpus.
Both the adjective and the noun were checked with regular expressions (N = 4 × 106, V =
1 391 498). HGC-AN: 12 million instances of adjectives modifying nouns within a noun phrase,
extracted using part-of-speech patterns. This simple extraction method has been found to reach
excellent precision (Evert and Kermes, 2003). Both the adjective and the noun were validated
with a morphological analyser (N = 12 × 106, V = 3 621 708).

The Herdan law and the size-invariant relative frequency spectrum, which are characteristic
properties of the ZM model, have repeatedly been critcised as unrealistic (e.g. Baayen, 2001,
118). Figure 1 shows the development of the relative frequency spectrum up to m = 5 for
the HGC-AN data set (left panel). After approximately 2 million tokens, the relative spectrum
has converged and is nearly constant afterwards. Likewise, the relative error of the Herdan law
E

[
V (N)

]
= C · Nα with α = 0.87 (determined by linear regression) remains below 1% after

the first 4 million tokens (right panel). Together with similar results for the other three data sets,
this is a strong indication that the ZM and fZM models may indeed be well suited for the type
of frequency data represented by these data sets.
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Figure 1: Development of relative frequency spectrum and relative error of Herdan law (Heaps’
law) with α = 0.87 for the HGC-AN data set.
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7 Evaluation of the Zipf-Mandelbrot models

Both the ZM and the fZM model were implemented using the freely available statistical com-
putation software R,9 and fitted to the four data sets described in Section 6. For the infinite ZM
model, the parameter α can be estimated directly from (22) for m = 1:

α =
E

[
V1

]

E
[
V

] ≈ V1

V
(32)

(see also Rouault, 1978, 172). However, Equation (32) turned out to give unsatisfactory re-
sults, so the parameters for both models were estimated through non-linear minimisation of
a goodness-of-fit chi-squared statistic for the first 15 spectrum elements, with the additional
constraint E

[
V

]
= V . Goodness-of-fit was measured with a multi-variate chi-squared test,

following Baayen (2001, Sec. 3.3) and using the lexstats implementation. The results are
shown in Table 1.10

ZM model fZM model
data set α χ2

14 α S χ2
13

BNC-N 0.4686416 80.75 0.4728356 4 021 728 22.20
HGC-N 0.6181580 27015.67 0.6663519 16 325 666 591.72

BNC-AN 0.7145849 313472.66 0.9168508 9 048 002 9364.46
HGC-AN 0.7441247 441448.77 0.9134667 37 983 975 1855.59

Table 1: Estimated Zipf parameter α, population size S, and goodness-of-fit statistic χ2 for the
ZM and fZM models applied to the four data sets of Section 6.

The fZM model gives considerably better approximations of the observed frequency spectrum
than the ZM model, especially for the adjective-noun data sets where the distribution of popu-
lation probabilities is much more skewed (indicated by a larger value of α). It is worth noting
that the fZM model is entirely consistent with the BNC-N data set: χ2

13 = 22.20 corresponds to
a p-value of p ≈ 0.0524 and the model is thus accepted at the 5% significance level.

A graphic representation of the accordance between the expected and observed frequency spec-
trum for the HGC-AN data set is shown in Figure 2. Surprisingly, the estimated lower cutoff
points (A = 9.267 × 10−9 for BNC-AN and A = 1.576 × 10−9 for HGC-AN) are already quite
close to the observed relative frequency of the hapax legomena (p = 1/N ). According to the
predicitions of the fZM model, increasing the sample 100-fold (N ≈ 109) would already leave
the LNRE zone, with all expected frequencies greater than 1 (cf. Baayen, 2001, Sec. 2.4).

A possible explanation for this counter-intuitive result is provided by term clustering effects,
which violate the randomness assumption and cause the number V1 of hapax legomena to be
less than predicted by a random sample model. Such clustering effects can be detected with
a dispersion test as described by (Baayen, 2001, Sec. 5.1). For the HGC-AN data set, a highly

9http://www.r-project.org/
10Note that the χ2 statistic for the ZM model has df = 14 because 2 parameters were estimated from the observed spectrum. Likewise, the statistic for the fZM model with 3 estimated

parameters has df = 13.
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Figure 2: Expected frequency spectrum of ZM (left panel) and fZM (right panel) models com-
pared to observed spectrum for the HGC-AN data set (logarithmic scale, up to m = 50).

significant deviation from the randomness assumption (p ≈ 0) was found with this test.11

For comparison, I also applied the GIGP, log-normal, and Yule-Simon models (see Section 5)
to the four data sets, using the implementations included in the lexstats package with au-
tomatic parameter optimisation. Goodness-of-fit results for the HGC-AN data set range from
χ2

14 = 259800.05 (log-normal) to χ2
13 = 63531.61 (Yule-Simon); for the numerically simpler

GIGP model with γ = −0.5, no reasonable fit could be achieved. Results for the BNC-N data
set range from χ2

13 = 36562.75 (log-normal) to χ2
13 = 1267.81 (GIGP).

To conclude, the ZM model with its elegant formulation and convenient analytical properties
achieves a goodness-of-fit comparable to that of the other LNRE models. The less elegant
fZM model consistently outperforms its competitors and has the additional benefit of a fast and
robust numerical implementation.
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