Outline

Introduction

LNRE models

Evaluation of LNRE models

Results 1

Non-randomness and echoes

Results 2

Conclusion

What is word frequency distribution modelling?

▶ We are interested in analyzing type-token statistics . . .
 ▶ such as vocabulary size, type-token ratio,
 or the proportion of hapax legomena

▶ ... in (random) samples . . .
 ▶ more about (non-)randomness later

▶ ... from type-rich populations . . .
 ▶ words, n-grams and phrases are just the obvious examples
 ▶ also subcategorisation patterns, named entities, treebank
 grammar rules, collocations, insect species, etc.

▶ ... with a skewed, “Zipfian” distribution
 ▶ in fact, our models are all based on Zipf’s law

Type-token statistics

Given a sample of N_0 tokens, we are interested in these observations:

▶ vocabulary size V (= number of different types)
▶ number V_1 of hapaxes (= types occurring just once)
▶ frequency spectrum V_m for $m \in \mathbb{N}$ (= types occurring exactly m times)
▶ development of $V(N)$ and $V_m(N)$ for increasing samples of $0 \leq N \leq N_0$
 tokens (→ vocabulary growth)
▶ not in frequencies of specific types
 ▶ focus on low-frequency data
LNRE models & applications

- Statistical models for such distributions are known as LNRE models (Baayen 2001) and allow us to
 - estimate population vocabulary size S
 - model distribution of type probabilities in population
 - extrapolate vocabulary growth
 - predict frequency spectrum of unseen data

- Some applications of LNRE models
 - measuring morphological productivity
 - vocabulary richness (stylometry, child language acquisition)
 - quantifying data sparseness
 - empirically justified Bayesian priors
 - Good-Turing smoothing
 - reliability of statistical inference from low-frequency data

LNRE population models

- LNRE model describes distribution of type probabilities in a population with a large number of rare events
- One possibility is to specify an equation for Zipf-ranked type probabilities, e.g. the Zipf-Mandelbrot law
 \[\pi_k = \frac{C}{(k + b)^a} \quad (a > 1, b > 0) \]

- Better representation as type density function
- E.g. for Zipf-Mandelbrot:
 \[g(\pi) = C \cdot \pi^{-\alpha - 1} \quad (\alpha = \frac{1}{a}) \]
- LNRE models in zipfR library: ZM, IZM, GiGP

Outline

- Introduction
- LNRE models
- Evaluation of LNRE models
- Results 1
- Non-randomness and echoes
- Results 2
- Conclusion

Expectation & variance

- Expected values $E[V(N)]$ and $E[V_m(N)]$ for random sample of N tokens can easily be calculated:
 \[E[V] = \int_0^1 (1 - e^{-N\pi}) g(\pi) \, d\pi \]
 \[E[V_m] = \int_0^1 \frac{N\pi}{m} e^{-N\pi} g(\pi) \, d\pi \]

- Variances $\text{Var}[V(N)]$ and $\text{Var}[V_m(N)]$ are slightly uglier, but also easy to calculate (same for covariances)
LNRE parameter estimation

- Estimate LNRE model parameters by comparison of observed and expected frequency spectrum
- Nonlinear minimization of cost function (e.g. MSE)
- Measure goodness-of-fit by multivariate chi-squared test (Baayen 2001)
- General observation: GIGP (and fZM) achieve much better fit than simple ZM model
 - ZM assumes an infinite population vocabulary!

Goodness-of-fit & evaluation

- Goodness-of-fit measures how well model describes training data (df-adjustment corrects for overtraining)
- Evaluation measures we are really interested in:
 - accurate extrapolation of vocabulary growth
 - reliable prediction of unseen data
 - how well model describes true population distribution
- **No problem!** For a random sample, goodness-of-fit is a reliable predictor of “interesting” evaluation measures
 - overtraining controlled by variance estimates
- **Unfortunately...** corpora aren’t random samples
 - key problem: not sampled at token level
 - our empirical evaluation will show how seriously LNRE models are affected by the non-randomness of corpus data

Outline

- Introduction
- LNRE models
- Evaluation of LNRE models
- Results 1
- Non-randomness and echoes
- Results 2
- Conclusion

Data-set preparation and model training

- Corpora:
 - British National Corpus (English “balanced” corpus)
 - deWaC (German Web data)
 - La Repubblica (Italian newspaper data)
- From each corpus, we take 20 non-overlapping samples of randomly selected documents
- Each of the samples split into
 - 1 million tokens for training
 - 3 million tokens for testing
- Parameters of ZM, fZM and GIGP estimated on each training set
- Models used to predict vocabulary size V and number of hapaxes V_1 at sample sizes of 1, 2 and 3 million tokens
Prediction performance measured by relative error:
\[e = \frac{E[V(N)] - V(N)}{V(N)} \]

Square root of mean square relative error (rMSE), across 20 samples:
\[\sqrt{rMSE} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} (e_i)^2} \]
Goodness-of-fit on training set and prediction accuracy

Correlation: $r = -0.89$

Outline

- Introduction
- LNRE models
- Evaluation of LNRE models
- Results 1
- Non-randomness and echoes
- Results 2
- Conclusion

Term clustering

- *chondritic* occurs 4 times in the BNC, but all occurrences are in the same (scientific) document
 - As famously put by Church (2000):
 - The chance of two Noriegas is closer to $p/2$ than p^2
- Term clustering leads to *underestimation* of vocabulary size (because number of hapaxes is reduced)
Baayen’s (2001) partition-adjusted models

- Only current non-randomness correction method that can be used in the context of LNRE modeling
 - Models of Church and Gale (1995) and Katz (1996) account explicitly for non-random distributions (of the term clustering kind), but there is no tractable mathematical model that would integrate them into LNRE statistics
 - For Baayen’s parameter-adjusted models, population distribution depends on $N \rightarrow$ not a proper LNRE model

- Population partitioned into
 - normal types that satisfy random sampling assumption and
c - totally underdispersed types that concentrate all occurrences in a single “burst”

- Standard LNRE model used for normal part of the population; simple linear growth for underdispersed part

Echo adjustment

- Tackle non-randomness as a \textit{pre-processing} problem: the issue is with the way we count occurrences of types

- Rare, topic-specific content words occur maximally once in a document

- All other apparent instances of such words are instances of a special “anaphoric” type that has function of “echoing” the content words in a document

- Before:

 ... the result of an impactor of carbonaceous chondritic composition ... A typical strength of a \text{ECHO} \text{ECHO} is ...

- After:

 ... the result of an impactor of carbonaceous chondritic composition ... A typical strength of a \text{ECHO} \text{ECHO} is ...

Outline

- Introduction
- LNRE models
- Evaluation of LNRE models
- Results 1
- Non-randomness and echoes
- Results 2
- Conclusion
Goodness-of-fit on training set and prediction accuracy

Correlation: \(r = 0.94 \)

Outline

Introduction
LNRE models
Evaluation of LNRE models
Results 1
Non-randomness and echoes
Results 2
Conclusion
Directions for future work

- Echo-adjusted predictions pertain to distributions of document frequencies: what are the implications of this?
- Quality still not fully satisfying, especially at large prediction sizes (we would like to extrapolate V and other quantities to 100 times the training size and more!)

Some references

Appendix: result details for $\sqrt{\text{rMSE}}$

![Graph showing $\sqrt{\text{rMSE}}$ for $E[V]$ vs. V (BNC)]
Appendix: result details for $\sqrt{\text{rMSE}}$

<table>
<thead>
<tr>
<th>N_0</th>
<th>$2N_0$</th>
<th>$3N_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>IZM</td>
<td>GIGP</td>
</tr>
<tr>
<td>IZM</td>
<td>echo</td>
<td>IZM</td>
</tr>
<tr>
<td>GIGP</td>
<td>echo</td>
<td>GIGP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partition</td>
</tr>
</tbody>
</table>

Appendix: bias & variance of predictors

Relative error: $E[V]$ vs. V (REPUBBLICA)

<table>
<thead>
<tr>
<th>N_0</th>
<th>$2N_0$</th>
<th>$3N_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>IZM</td>
<td>GIGP</td>
</tr>
<tr>
<td>IZM</td>
<td>echo</td>
<td>IZM</td>
</tr>
<tr>
<td>GIGP</td>
<td>echo</td>
<td>GIGP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partition</td>
</tr>
</tbody>
</table>

Relative error: $E[V]$ vs. V (BNC)

<table>
<thead>
<tr>
<th>N_0</th>
<th>$2N_0$</th>
<th>$3N_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>IZM</td>
<td>GIGP</td>
</tr>
<tr>
<td>IZM</td>
<td>echo</td>
<td>IZM</td>
</tr>
<tr>
<td>GIGP</td>
<td>echo</td>
<td>GIGP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partition</td>
</tr>
</tbody>
</table>

Relative error: $E[V]$ vs. V (DEWAC)

<table>
<thead>
<tr>
<th>N_0</th>
<th>$2N_0$</th>
<th>$3N_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>IZM</td>
<td>GIGP</td>
</tr>
<tr>
<td>IZM</td>
<td>echo</td>
<td>IZM</td>
</tr>
<tr>
<td>GIGP</td>
<td>echo</td>
<td>GIGP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partition</td>
</tr>
</tbody>
</table>
Appendix: bias & variance for randomized data

Relative error: $E[V]$ vs. V (REPUBBLICA)

- N_0
- $2N_0$
- $3N_0$

Relative error: $E[V]$ vs. V (BNC)

Relative error: $E[V]$ vs. V (DEWAC)

rMSE for $E[V]$ vs. V (test set & extrapolation, REPUBBLICA)

Appendix: prediction vs. extrapolation